期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Role of capillary adhesion in the friction peak during the tacky transition 被引量:1
1
作者 Tianyan GAO Jiaxin YE +3 位作者 Kaisen ZHANG Xiaojun LIU Yan ZHANG Kun LIU 《Friction》 SCIE EI CAS CSCD 2022年第8期1208-1216,共9页
The friction peak that occurs in tire–road sliding when the contact changes from wet to dry was previously attributed to capillary cohesion,van der Waals attraction,and surface roughness,but the detailed mechanisms h... The friction peak that occurs in tire–road sliding when the contact changes from wet to dry was previously attributed to capillary cohesion,van der Waals attraction,and surface roughness,but the detailed mechanisms have yet to be revealed.In this study,friction and static contact experiments were conducted using a custom-built in situ optical microtribometer,which allowed us to investigate the evolution of the friction,normal load,and contact area between a polydimethylsiloxane(PDMS)film and a silicon nitride ball during water volatilization.The friction coefficient increased by 100%,and the normal force dropped by 30%relative to those in the dry condition during the wet-to-dry transition.In static contact experiments,the probe indentation depth increased,and the normal load decreased by~60%as the water evaporated.Combining the friction and static contact results,we propose that the large friction peak that appeared in this study can be attributed to the combined effects of increased adhesive capillary force and increased plowing during the wet-to-dry transition. 展开更多
关键词 friction peak capillary adhesion tacky condition polydimethylsiloxane(PDMS)film silicon nitride
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部