We present a theoretical investigation of rotating electroosmotic flows(EOFs) in soft parallel plate microchannels. The soft microchannel, also called as the polyelectrolyte-grafted microchannel, is denoted as a rigid...We present a theoretical investigation of rotating electroosmotic flows(EOFs) in soft parallel plate microchannels. The soft microchannel, also called as the polyelectrolyte-grafted microchannel, is denoted as a rigid microchannel coated with a polyelectrolyte layer(PEL) on its surface. We compare the velocity in a soft microchannel with that in a rigid one for different rotating frequencies and find that the PEL has a trend to lower the velocities in both directions for a larger equivalent electrical double layer(EDL) thickness λFCL(λFCL = 0.3) and a smaller rotating frequency ω(ω < 5).However, for a larger rotating frequency ω(ω = 5), the main stream velocity u far away from the channel walls in a soft microchannel exceeds that in a rigid one. Inspired by the above results, we can control the EOF velocity in micro rotating systems by imparting PELs on the microchannel walls, which may be an interesting application in biomedical separation and chemical reaction.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11772162 and11472140)the Inner Mongolia Autonomous Region Grassland Talent(No.12000-12102013)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2016MS0106)
文摘We present a theoretical investigation of rotating electroosmotic flows(EOFs) in soft parallel plate microchannels. The soft microchannel, also called as the polyelectrolyte-grafted microchannel, is denoted as a rigid microchannel coated with a polyelectrolyte layer(PEL) on its surface. We compare the velocity in a soft microchannel with that in a rigid one for different rotating frequencies and find that the PEL has a trend to lower the velocities in both directions for a larger equivalent electrical double layer(EDL) thickness λFCL(λFCL = 0.3) and a smaller rotating frequency ω(ω < 5).However, for a larger rotating frequency ω(ω = 5), the main stream velocity u far away from the channel walls in a soft microchannel exceeds that in a rigid one. Inspired by the above results, we can control the EOF velocity in micro rotating systems by imparting PELs on the microchannel walls, which may be an interesting application in biomedical separation and chemical reaction.