Polyester(PET) was pre-activated by atmospheric air plasma and coated by various inorganic oxide nanoparticles(MOx) such as titanium dioxide(TiO2), zinc oxide(ZnO), and silicon oxide(SiO2), using poly(vinylidene fluor...Polyester(PET) was pre-activated by atmospheric air plasma and coated by various inorganic oxide nanoparticles(MOx) such as titanium dioxide(TiO2), zinc oxide(ZnO), and silicon oxide(SiO2), using poly(vinylidene fluoride)(PVDF) and chitosan(CT) as binders. The resulting PET-PVDF-MOx-CT composites were thermally compressed and then characterized by scanning electron microscopy, Fourier infrared spectroscopy, thermal gravimetric analysis, and flame retardancy(FR) ability tests. PET modifications resulted in more thermally stable and less harmful composites with weaker hazardous gas release. This was explained in terms of structure compaction that blocks pyrolysis gas emissions.CT incorporation was found to reduce the material susceptibility to oxidation. This judicious procedure also allowed improving flame retardancy ability, by lengthening the combustion delay and slowing the flame propagation. Chitosan also turned out to contribute to a possible synergy with the other polymers present in the synthesized materials. These results provide valuable data that allow understanding the FR phenomena and envisaging low-cost high FR materials from biodegradable raw materials.展开更多
研究了不饱和聚酯树脂(UP 树脂)/苎麻布/碱式硫酸镁晶须复合材料的力学性能,探讨了苎麻布、晶须加入量对复合材料力学性能及热稳定性的影响,分析了复合材料的冲击断裂形貌。研究表明:当复合材料中苎麻布的质量恒定为 UP 树脂质量的7%时...研究了不饱和聚酯树脂(UP 树脂)/苎麻布/碱式硫酸镁晶须复合材料的力学性能,探讨了苎麻布、晶须加入量对复合材料力学性能及热稳定性的影响,分析了复合材料的冲击断裂形貌。研究表明:当复合材料中苎麻布的质量恒定为 UP 树脂质量的7%时,增加晶须的含量,复合材料的弯曲模量及热稳定性随之增加,弯曲强度逐渐下降,拉伸强度及冲击强度先增加而后降低,当晶须加入量为10%时,拉伸强度及冲击强度均达到最大值,分别为30.16 MPa 和6.07 kJ/m^2;当复合材料中晶须的质量恒定为 UP 树脂质量的10%时,增加复合材料中苎麻布的含量,复合材料的力学性能均随之增加,但热稳定性却下降。UP 树脂/苎麻布/晶须复合材料的断面既有晶须裸露,又有卷曲的苎麻纤维分布,但苎麻布对冲击强度的贡献更突出。展开更多
基金financially supported by the GEMTEX Laboratory-France
文摘Polyester(PET) was pre-activated by atmospheric air plasma and coated by various inorganic oxide nanoparticles(MOx) such as titanium dioxide(TiO2), zinc oxide(ZnO), and silicon oxide(SiO2), using poly(vinylidene fluoride)(PVDF) and chitosan(CT) as binders. The resulting PET-PVDF-MOx-CT composites were thermally compressed and then characterized by scanning electron microscopy, Fourier infrared spectroscopy, thermal gravimetric analysis, and flame retardancy(FR) ability tests. PET modifications resulted in more thermally stable and less harmful composites with weaker hazardous gas release. This was explained in terms of structure compaction that blocks pyrolysis gas emissions.CT incorporation was found to reduce the material susceptibility to oxidation. This judicious procedure also allowed improving flame retardancy ability, by lengthening the combustion delay and slowing the flame propagation. Chitosan also turned out to contribute to a possible synergy with the other polymers present in the synthesized materials. These results provide valuable data that allow understanding the FR phenomena and envisaging low-cost high FR materials from biodegradable raw materials.
文摘研究了不饱和聚酯树脂(UP 树脂)/苎麻布/碱式硫酸镁晶须复合材料的力学性能,探讨了苎麻布、晶须加入量对复合材料力学性能及热稳定性的影响,分析了复合材料的冲击断裂形貌。研究表明:当复合材料中苎麻布的质量恒定为 UP 树脂质量的7%时,增加晶须的含量,复合材料的弯曲模量及热稳定性随之增加,弯曲强度逐渐下降,拉伸强度及冲击强度先增加而后降低,当晶须加入量为10%时,拉伸强度及冲击强度均达到最大值,分别为30.16 MPa 和6.07 kJ/m^2;当复合材料中晶须的质量恒定为 UP 树脂质量的10%时,增加复合材料中苎麻布的含量,复合材料的力学性能均随之增加,但热稳定性却下降。UP 树脂/苎麻布/晶须复合材料的断面既有晶须裸露,又有卷曲的苎麻纤维分布,但苎麻布对冲击强度的贡献更突出。