Worldwide environment has resulted in a limit on the sulfur content of gasoline.It is urgent to investigate the desulfurization of gasoline.The polydimethylsiloxane(PDMS)/polyetherimide(PEI)composite membranes were pr...Worldwide environment has resulted in a limit on the sulfur content of gasoline.It is urgent to investigate the desulfurization of gasoline.The polydimethylsiloxane(PDMS)/polyetherimide(PEI)composite membranes were prepared by casting a PDMS solution onto porous PEI substrates and characterized by scanning electron microscope(SEM).The membranes were used for sulfur removal from gasoline by pervaporation.The effects of feed temperature,sulfur content in the feed and PDMS layer thickness on membrane performance were investigated,and an activation energy of permeation was obtained.Experimental results indicated that higher feed temperature yielded higher total flux and lower sulfur enrichment factor.The total flux varied little with the increase of sulfur content in the feed,but the sulfur enrichment factor first increased with the amount of thiophene added into the gasoline,and then the variation was little.The increase of PDMS layer thickness resulted in a smaller flux but a larger sulfur enrichment factor.The result indicates that the PDMS/PEI composite membranes are promising for desulfurization by pervaporation.展开更多
Polyetherimide (PEI) was sulfonated by chlorosulfonic acid for the first time. The sulfonated products were characterized by FT-IR, DSC, ion exchange capacity and water sorption measurement. The hydrophilicity of PE...Polyetherimide (PEI) was sulfonated by chlorosulfonic acid for the first time. The sulfonated products were characterized by FT-IR, DSC, ion exchange capacity and water sorption measurement. The hydrophilicity of PEI was improved by the sulfonation. The PEI was blended with the sodium salt form of sulfonated PEI (SPEI) to prepare microporous membranes. The morphologies of the membranes were studied with Scanning Electron Microscope (SEM).展开更多
采用聚对苯二甲酸乙二醇酯(PET)与本征阻燃材料聚醚酰亚胺(PEI)共混、熔融制备PET/PEI合金,基于Materials Studio 7.0软件构建PET/PEI分子模型,进行相结构模拟,研究PET/PEI合金的相容性,并探讨PEI含量对PET/PEI合金力学性能及阻燃性能...采用聚对苯二甲酸乙二醇酯(PET)与本征阻燃材料聚醚酰亚胺(PEI)共混、熔融制备PET/PEI合金,基于Materials Studio 7.0软件构建PET/PEI分子模型,进行相结构模拟,研究PET/PEI合金的相容性,并探讨PEI含量对PET/PEI合金力学性能及阻燃性能的影响。结果表明:在任意共混比下PET/PEI合金为互不相容体系,当PEI质量分数为10%时,PET-PEI分子间C—C原子对之间的径向分布函数值为4.09,大于PEI-PEI分子间C—C原子对之间的径向分布函数值,PET/PEI合金相容性相对较好;当PEI质量分数为10%时,PET/PEI合金拉伸强度最高,为47.2 MPa;PET/PEI合金的极限氧指数(LOI)随PEI含量的增加而增大,PEI质量分数为10%时合金的LOI为24.3%,PEI质量分数为15%时合金的LOI为27.0%;PET与PEI相容性不佳,但加入PEI仍能有效改善PET/PEI合金的力学性能和阻燃性能,PEI质量分数为10%时PET/PEI合金相容性较好,力学性能好,同时阻燃性能也得到提升。展开更多
基金Supported by the National Basic Research Program of China(2009CB623404)the National Natural Science Foundation of China(50708109,20736003)the National High Technology Research and Development Program of China(2007AA06Z317)
文摘Worldwide environment has resulted in a limit on the sulfur content of gasoline.It is urgent to investigate the desulfurization of gasoline.The polydimethylsiloxane(PDMS)/polyetherimide(PEI)composite membranes were prepared by casting a PDMS solution onto porous PEI substrates and characterized by scanning electron microscope(SEM).The membranes were used for sulfur removal from gasoline by pervaporation.The effects of feed temperature,sulfur content in the feed and PDMS layer thickness on membrane performance were investigated,and an activation energy of permeation was obtained.Experimental results indicated that higher feed temperature yielded higher total flux and lower sulfur enrichment factor.The total flux varied little with the increase of sulfur content in the feed,but the sulfur enrichment factor first increased with the amount of thiophene added into the gasoline,and then the variation was little.The increase of PDMS layer thickness resulted in a smaller flux but a larger sulfur enrichment factor.The result indicates that the PDMS/PEI composite membranes are promising for desulfurization by pervaporation.
基金support of the National Natural Science Foundation of China(Grant No.59833120)
文摘Polyetherimide (PEI) was sulfonated by chlorosulfonic acid for the first time. The sulfonated products were characterized by FT-IR, DSC, ion exchange capacity and water sorption measurement. The hydrophilicity of PEI was improved by the sulfonation. The PEI was blended with the sodium salt form of sulfonated PEI (SPEI) to prepare microporous membranes. The morphologies of the membranes were studied with Scanning Electron Microscope (SEM).
文摘采用聚对苯二甲酸乙二醇酯(PET)与本征阻燃材料聚醚酰亚胺(PEI)共混、熔融制备PET/PEI合金,基于Materials Studio 7.0软件构建PET/PEI分子模型,进行相结构模拟,研究PET/PEI合金的相容性,并探讨PEI含量对PET/PEI合金力学性能及阻燃性能的影响。结果表明:在任意共混比下PET/PEI合金为互不相容体系,当PEI质量分数为10%时,PET-PEI分子间C—C原子对之间的径向分布函数值为4.09,大于PEI-PEI分子间C—C原子对之间的径向分布函数值,PET/PEI合金相容性相对较好;当PEI质量分数为10%时,PET/PEI合金拉伸强度最高,为47.2 MPa;PET/PEI合金的极限氧指数(LOI)随PEI含量的增加而增大,PEI质量分数为10%时合金的LOI为24.3%,PEI质量分数为15%时合金的LOI为27.0%;PET与PEI相容性不佳,但加入PEI仍能有效改善PET/PEI合金的力学性能和阻燃性能,PEI质量分数为10%时PET/PEI合金相容性较好,力学性能好,同时阻燃性能也得到提升。