期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
THERMAL BEHAVIOR OF THERMOTROPIC HYDROXYETHYL CELLULOSE ACETATE/POLYETHYLENE BLENDS
1
作者 王海琳 陈进明 +1 位作者 黄勇 沈家瑞 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1997年第1期57-64,共8页
The thermal behavior of thermotropic hydroxyethyl cellulose acetate (HECA)/polyethylene (PE) blends has been studied by DSC. It is found that the blends of HECA and PE are immiscible but the crystallization of PE is a... The thermal behavior of thermotropic hydroxyethyl cellulose acetate (HECA)/polyethylene (PE) blends has been studied by DSC. It is found that the blends of HECA and PE are immiscible but the crystallization of PE is affected by HECA chains in the blends with more than 50% HECA, which results in the subordinate crystallization of PE and the formation of imperfect structures in the PE crystals. The imperfection of PE crystals in the blends can be eliminated after annealing at 393K. 展开更多
关键词 hydroxyethyl cellulose acetate polyethylene blends thermal behavior polyethylene blends
下载PDF
TIME-DEPENDENT MORPHOLOGY OF POLYETHYLENE-POLYPROPYLENE BLENDS
2
作者 Robert A. Shanks 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2002年第6期497-508,共12页
The effect of time-temperature treatment on morphology of polyethylene-polypropylene (PE-PP) blends wasstudied to establish a relationship between thermal history, morphology and mechanical properties. Polypropylene (... The effect of time-temperature treatment on morphology of polyethylene-polypropylene (PE-PP) blends wasstudied to establish a relationship between thermal history, morphology and mechanical properties. Polypropylene (PP)homopolymers were used to blend with various polyethylenes (PE), including high density polyethylene (HDPE), lowdensity polyethylene (LDPE), linear low density polyethylene (LLDPE), and very and ultra low density polyethylene(VLDPE and ULDPE). The majority of the blends were prepared at a ratio of PE:PP = 80:20, while blends of PP and LLDPEwere prepared at various compositions. Thermal treatment was carried out at temperatures between the crystallizationtemperatures of PP and PEs to allow PP to crystallize first from the blends. On cooling further, PE crystallized too. A verydiffuse PP spherulite morphology in the PE matrix was formed in some partially miscible blends when PP was less than 20%by mass. Droplet-matrix structures were developed in other blends with either PP or PE as dispersed domains in a continuousmatrix, depending on the composition ratio. The scanning electron microscopy (SEM) images displayed a fibrillar structureof PP spherulite in the LLDPE-PP (80:20) and large droplets of PP in the HDPE-PP (80:20) blend, providing larger surfacearea and better bonding in the LLDPE-PP (80:20) blends. This explains why the blends with diffuse spherulite morphologyshowed greater improvement in tensile properties than droplet-matrix morphology blends after time-temperature treatment. 展开更多
关键词 Polypropylene and polyethylene blends Thermal history SPHERULITE MORPHOLOGY Mechanical properties
下载PDF
Effect of Components on the Performance of Asphalt Modified by Waste Packaging Polyethylene
3
作者 张茂荣 FANG Changqing +5 位作者 ZHOU Shisheng CHENG Youliang YU Ruien LIU Shaolong LIU Xiaolong SU Jian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第4期931-936,共6页
Waste packaging polyethylene(WPE) was used to modify raw asphalt by melt blending the components at 190 ℃ for 1 h in a simple mixer and subsequently machining them at 120 ℃ for 1 h in a highspeed shearing machine.... Waste packaging polyethylene(WPE) was used to modify raw asphalt by melt blending the components at 190 ℃ for 1 h in a simple mixer and subsequently machining them at 120 ℃ for 1 h in a highspeed shearing machine.The effect of modification on the degree of the penetration,the softening point and the ductility of the asphalt was studied using fluorescent microscopy,infrared spectrometry,component changes and various other techniques.The experimental results showed that no chemical reactions took place in the components themselves(saturate,aromatic,asphaltene and resin) during the modifications.The softening point and penetration of the asphalt were found to be closely related to the resulting contents of the asphaltene,saturate and resin components.In addition,aromatics were identified as having the greatest impact on the ductility of the asphalt. 展开更多
关键词 asphalt penetration ductility resin softening aromatic packaging polyethylene blending mixtures
下载PDF
Morphology and Mechanical Properties of Immiscible Polyethylene/Polyamide12 Blends Prepared by High Shear Processing 被引量:1
4
作者 wen-jin yu shu-man xu +1 位作者 li zhang 傅强 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第9期1132-1142,共11页
In this work, completely immiscible polyethylene/polyamidel2 (PE/PA12) blends were prepared by high shear extruder. The morphology and mechanical properties of the blends were investigated as a function of rotation ... In this work, completely immiscible polyethylene/polyamidel2 (PE/PA12) blends were prepared by high shear extruder. The morphology and mechanical properties of the blends were investigated as a function of rotation speed. It was found that the high shear processing is an effective method to improve the dispersion of the PAl2 phase in PE matrix when PA 12 contents are 5 wt% and 10 wt%, and the dispersed phase particle size is reduced with the increase of rotation speed from 100 r/min to 500 r/min. However, with further increase of PAl2 content to 20 wt%, high shear processing has no effect on the phase morphology of the blends. Accordingly, a largely increased elongation at break and impact strength are observed for PE/PAl2/95/5 and PE/PA12/90/10 blends obtained at high rotation speeds but no effect on the property of PE/PAI2/80/20. Annealing experiment demonstrated that the obtained phase morphology is not stable thus compatibilizer should be introduced in the future work. This work could provide a guideline for the application of high shear processing in the preparation of polymer blends with huge polarity difference. 展开更多
关键词 Immiscible polyethylene/polyamidel2 (PE/PA12) blends High shear processing Phase morphology
原文传递
Uniform to Accelerated Crystal Twisting Transition in Deuterate Polyethylene/Poly(ethylene-alt-propylene) Blend Films 被引量:1
5
作者 Li-na Zhang Wei-chao Shi +1 位作者 韩志超 程贺 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2014年第9期1260-1270,共11页
A uniform to accelerated crystal twisting transition is observed in deuterate polyethylene/poly(ethylene-alt- propylene) (d-PE/PEP) blend films. And the band period is a function of initial d-PE concentration, que... A uniform to accelerated crystal twisting transition is observed in deuterate polyethylene/poly(ethylene-alt- propylene) (d-PE/PEP) blend films. And the band period is a function of initial d-PE concentration, quench depth and annealing time of phase separation. As Keith and Padden suggested, twisting of lamella is due to the unbalanced stress on its both sides, which can supply a satisfying explanation to banded spherulites formed in homogeneous systems. When it comes to d-PE/PEP blend system, in homogeneous 99% d-PE/PEP (weight fraction of d-PE) blend film, the formation of banded spherulite is observed as a result of uniform twisting of ribbon like d-PE lamellae along the radial direction. With the amorphous PEP piling up, it transfers into accelerated edge-on to fiat-on twisting due to crystallization assisted phase separation. The mechanism can be interpreted as following: d-PE molecules must inter-diffuse to the twisting growth front to continue the secondary nucleation and growth process. Meanwhile, the amorphous PEP molecules are rejected and accumulated at the twisting growth front. Once the d-PE lamella begins to twist because of unbalanced stress on both sides, the accumulated rubber phase at the growth front strengthens the unbalance and accelerates the edge-on to flat-on twisting. The concentration wave propagates further away with constant speed, and leads to concentric ring pattern with periodic nonuniform twisting along the radial direction. Since this is a kinetic effect, the band period can be controlled through initial d-PE concentration, quench depth and annealing time of phase separation. Our result shows that crystallization assisted phase separation can modify lamella growth kinetic pathway, thereby assisting concentric ring pattern formation. 展开更多
关键词 polyethylene/poly(ethylene-alt-propylene) (d-PE/PEP) blend Phase separation Crystallization.
原文传递
Thermomechanical and Shape Memory Properties of SCF/SBS/LLDPE Composites
6
作者 王永坤 Wen-chao Tian +1 位作者 Guang-ming Zhu Jian-qiang Xie 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第11期1354-1362,共9页
A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber(SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer(SBS)/linear low density polyethylene(... A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber(SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer(SBS)/linear low density polyethylene(LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis(DMA) and differential scanning calorimetry(DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope(SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content. 展开更多
关键词 blend styrene calorimetry copolymer polyethylene curing thermally butadiene modulus prior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部