期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A New Kind of Shape-stabilized Phase Change Materials 被引量:2
1
作者 肖力光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期491-494,共4页
Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of t... Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of the materials were 24℃and 172 J/g,respectively.A new shape-stabilized phase change materials were prepared,using high density polyethylene as supporting material.The PCM kept the shape when temperature was higher than melting point.Thus,it can directly contact with heat transfer media.The structure,morphology and thermal behavior of PCM were analyzed by FTIR,SEM and DSC. 展开更多
关键词 phase change material(PCM) shape-stabilized phase change materials high density polyethylene
下载PDF
Synergistic Effect of Atmospheric Pressure Plasma Pre-Treatment on Alkaline Etching of Polyethylene Terephthalate Fabrics and Films
2
作者 Amel E.A.ELABID 郭颖 +2 位作者 石建军 丁可 张菁 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第4期346-352,共7页
Dyeing of PET materials by traditional methods presents several problems.Plasma technology has received enormous attention as a solution for the environmental problems related with textile surface modifications,and th... Dyeing of PET materials by traditional methods presents several problems.Plasma technology has received enormous attention as a solution for the environmental problems related with textile surface modifications,and there has been a rapid development and commercialization of plasma technology over the past decade.In this work,the synergistic effect of atmospheric pressure plasma on alkaline etching and deep coloring of dyeing properties on polyethylene terephthalate(PET)fabrics and films was investigated.The topographical changes of the PET surface were investigated by atomic force microscopy(AFM)images,which revealed a smooth surface morphology of the untreated sample whereas a high surface roughness for the plasma and/or alkaline treated samples.The effects of atmospheric pressure plasma on alkaline etching of the structure and properties of PET were investigated by means of differential scanning calorimetry(DSC),the main objective of performing DSC was to investigate the effect of the plasma pre-treatment on the T_g and T_m.Using a tensile strength tester YG065 H and following a standard procedure the maximum force and elongation at maximum force of PET materials was investigated.Oxygen and argon plasma pre-treatment was found to increase the PET fabric weight loss rate.The color strength of PET fabrics was increased by various plasma pre-treatment times.The penetration of plasma and alkaline reactive species deep into the PET structure results in better dyeability and leaves a significant effect on the K/S values of the plasma pre-treated PET.It indicated that plasma pre-treatment has a great synergistic effect with the alkaline treatment of PET. 展开更多
关键词 atmospheric pressure plasma synergistic effect alkaline treatment polyethylene terephthalate materials K/S value surface roughness
下载PDF
Polyethylene glycol/polylactic acid block co‐polymers as solid–solid phase change materials 被引量:1
3
作者 Xiang YDSoo Joseph K.Muiruri +11 位作者 Jayven CCYeo Zhuang MPng Anqi Sng Huiqing Xie Rong Ji Suxi Wang Hongfei Liu Jianwei Xu Xian JLoh Qingyu Yan Zibiao Li Qiang Zhu 《SmartMat》 2023年第3期108-119,共12页
Phase change materials(PCMs)are promising thermal energy storage materials due to their high specific latent heat.Conventional PCMs typically exploit the solid–liquid(s–l)transition.However,leakage and leaching are ... Phase change materials(PCMs)are promising thermal energy storage materials due to their high specific latent heat.Conventional PCMs typically exploit the solid–liquid(s–l)transition.However,leakage and leaching are common issues for solid–liquid PCMs,which have to be addressed before usage in practical applications.In contrast,solid–solid(s–s)PCMs would naturally overcome these issues due to their inherent form stability and homogeneity.In this study,we report a new type of s–s PCM based on chemically linked polyethylene glycol(PEG,the PCM portion)with polylactic acid(PLA,the support portion)in the form of a block co‐polymer.Solid‐solid latent heat of up to 56 J/g could be achieved,with melting points of between 44°C and 55°C.For comparison,PEG was physically mixed into a PLA matrix to form a PEG:PLA composite.However,the composite material saw leakage of up to 9%upon heating,with a corresponding loss in thermal storage capacity.In contrast,the mPEG/PLA block co‐polymers were found to be completely homogeneous and thermally stable even when heated above its phase transition temperature,with no observable leakage,demonstrating the superiority of chemical linking strategies in ensuring form stability. 展开更多
关键词 block co‐polymer chemically linked form‐stable phase change material(PCM) polyethylene glycol(PEG) polylactic acid(PLA) solid–solid transition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部