Post-consumer polymeric wastes in form of low-density polyethylene (LDPE) can now be considered suitable as a precursor for the synthesis of low-cost activated carbon (AC). This study produced AC from LDPE using sulph...Post-consumer polymeric wastes in form of low-density polyethylene (LDPE) can now be considered suitable as a precursor for the synthesis of low-cost activated carbon (AC). This study produced AC from LDPE using sulphuric acid (H<sub>2</sub>SO<sub>4</sub>) and potassium hydroxide (KOH) as the activating agent. The reaction conditions for pyrolysis were varied in the range of 0.50 - 2.00 M, 400<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C - 500<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C, and 45 - 60 minutes. Physico-chemical investigations reveal that AC yield is significantly dependent on both carbonization temperatures and time. The obtained optimum values of 446.50<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C and 51.09 mins gave a yield of 24% for the base-activated carbon. The high iodine numbers obtained strongly indicate the presence of large surface area and pore volumes is further confirmed using the Scanning Electron Microscopy (SEM) analysis which reveals the presence of pores on the external surface of the carbons. Fourier Transform Infrared Technique (FTIR) analysis further shows that the synthesized compounds are purely carbon with rich oxy-gen-surface complexes on the surface which is as a result of the introduction of the chemical oxidizing agents. The produced carbons were found to have high adsorption affinity for selected inorganic ions which are: Mn<sup>7+</sup>, Co<sup>2+</sup>, and Cr<sup>6+</sup>. Adsorption isotherm results show the adsorption process to be favourable with the Langmuir isotherm parameter RL having values of <1, while the Freudlich adsorption model was found to perfectly fit the data at selected adsorbent dosages and adsorbate concentrations. The pseu-do-second-order model provides the best correlation for the kinetic analysis. The acid-activated carbon was found to have better adsorption capacities than the base-activated carbon.展开更多
In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymeriz...In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymerization rate of waste PET bottles and the yield of TPA were conducted to determine the optimized experimental conditions,in terms of reaction time,reaction temperature,dosage of ethylene glycol and sodium bicarbonate,amount of distilled water and stirring rate.Then IR spectra and elemental analysis were carried out for the characterization of obtained product.Under optimal experimental conditions,over 98%PET can be depolymerized into the target product(TPA)and the purity and yield of TPA are over 97%and 94%,respectively.Both the experimental and analytical results support a feasible process for the preparation of TPA from waste PET.It is expected that this alcohol alkali hydrolysis method can promise an effective way for the sustainable recycling of waste PET.展开更多
Polyethylene is the type of waste plastic that accounts for the most significant proportion of municipal solid waste.Waste polyethylene can be valorized via pyrolysis and produce value-added oil,gas,and char.On the ot...Polyethylene is the type of waste plastic that accounts for the most significant proportion of municipal solid waste.Waste polyethylene can be valorized via pyrolysis and produce value-added oil,gas,and char.On the other hand,self-sustaining smoldering is an emerging technical means to deal with sand/soil contaminated by organic matter.The high-temperature heat generated by smoldering can be used as a heat source for pyrolyzing waste polyethylene.Therefore,this study investigates numerically the pyrolysis of waste polyethylene driven by self-sustaining smoldering.A novel 4-step lumped kinetic model is proposed for simulating the pyrolysis of waste polyethylene.The results indicate that the operating parameters can determine the pyrolysis product yields by regulating the pyrolysis temperature and the volatile residence time.Note that higher temperatures and longer residence times favor the generation of shorter-chain pyrolysis products because of the intensified volatiles’secondary cracking.It can be concluded that a high interface-wall heat transfer coefficient(400 W m^(-2)K^(-1)),a low PE content(0.20),a high char concentration(2.4%),and a moderate air velocity(0.040 m s^(-1))are beneficial to oil yield.To some extent,this study may broaden the boundaries for the application of self-sustained smoldering-driven pyrolysis.展开更多
Waste plastics,such as waste polyethylene terephthalate(PET)beverage bottles and waste rubber tyres are major municipal solid wastes,which may lead to various environmental problems if they are not appropriately recyc...Waste plastics,such as waste polyethylene terephthalate(PET)beverage bottles and waste rubber tyres are major municipal solid wastes,which may lead to various environmental problems if they are not appropriately recycled.In this study,the feasibility of collectively recycling the two types of waste into performance-increasing modifiers for asphalt pavements was analyzed.This study aimed to investigate the recycling mechanisms of waste PET-derived additives under the treatment of two amines,triethylenetetramine(TETA)and ethanolamine(EA),and characterize the performances of these additives in modifying rubberized bitumen,a bitumen modified by waste tyre rubber.To this end,infrared spectroscopy and thermal analyses were carried out on the two PET-derived additives(PET–TETA and PET–EA).In addition,infrared spectroscopy,viscosity,dynamic shear rheology,and multiple stress creep recovery tests were performed on the rubberized bitumen samples modified by the two PET-derived additives.We concluded that waste PET can be chemically upcycled into functional additives,which can increase the overall performance of the rubberized bitumen.The recycling method developed in this study not only helps alleviate the landfilling problems of both waste PET plastic and scrap tyres,but also turns these wastes into value-added new materials for building durable pavements.展开更多
The oxidative desulfurization(ODS) process is one of the new desulfurization processes for the production of clean fuels. Despite the benefits of the ODS process, this process faces several important challenges. One o...The oxidative desulfurization(ODS) process is one of the new desulfurization processes for the production of clean fuels. Despite the benefits of the ODS process, this process faces several important challenges. One of the most important challenges of this process is the management of a waste which is rich of sulfone compounds.In the present study, a new strategy which is the addition of waste to the bitumen with other solid waste such as high density polyethylene(HDPE) waste has been investigated. The experimental design method was applied to investigate the effect of addition of the sulfone and HDPE wastes to the properties of the bitumen blends including degree of penetration, softening point, and mass loss. It was found that the sulfone waste can be added to the bitumen as a softener. The results showed that several grades of bitumen including 50/60, 60/70, 85/100 can be produced through the addition of sulfone waste along with the HDPE waste to the base 60/70 bitumen.In general, the application of simple processes such as mixing the wastes with the bitumen can reduce the cost of waste management, considerably.展开更多
In this study,it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways.It is shown that the modified asphalt can meet the performance...In this study,it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways.It is shown that the modified asphalt can meet the performance index requirements when the components are present with a certain proportion or relative ratio(1:3.5).The dispersion process of the masterbatch in base asphalt can effectively be implemented,with good results and a smaller mixing time.The proposed approach may be regarded as a good strategy to achieve energy savings and protection of the environment.展开更多
This study presents the application of artificial neural networks(ANN)and least square support vector machine(LS-SVM)for prediction of Marshall parameters obtained from Marshall tests for waste polyethylene(PE)modifie...This study presents the application of artificial neural networks(ANN)and least square support vector machine(LS-SVM)for prediction of Marshall parameters obtained from Marshall tests for waste polyethylene(PE)modified bituminous mixtures.Waste polyethylene in the form of fibres processed from utilized milk packets has been used to modify the bituminous mixes in order to improve their engineering properties.Marshall tests were carried out on mix specimens with variations in polyethylene and bitumen contents.It has been observed that the addition of waste polyethylene results in the improvement of Marshall characteristics such as stability,flow value and air voids,used to evaluate a bituminous mix.The proposed neural network(NN)model uses the quantities of ingredients used for preparation of Marshall specimens such as polyethylene,bitumen and aggregate in order to predict the Marshall stability,flow value and air voids obtained from the tests.Out of two techniques used,the NN based model is found to be compact,reliable and predictable when compared with LS-SVM model.A sensitivity analysis has been performed to identify the importance of the parameters considered.展开更多
Waste polyethylene packaging (WPE) was used to modify asphalt, and hot storage stability of the modified asphalt was studied in this paper. The morphological change and component loss of WPE modified asphalt were ch...Waste polyethylene packaging (WPE) was used to modify asphalt, and hot storage stability of the modified asphalt was studied in this paper. The morphological change and component loss of WPE modified asphalt were characterized by fluorescence microscopy, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetry (TG) and isolation testing. In addition, the mechanism of the hot storage stability of WPE modified asphalt was discussed. The results showed that the modification of asphalt with WPE was a physical process. It was found that the filament or partly network-like structure formed in the modified asphalt system was beneficial to improving the hot storage stability. Moreover, the addition of WPE resulted in a decrease in both the light components volatilization and the macromolecules decomposition of asphalt. It was demonstrated that when the content of WPE in matrix asphalt was less than 10 wt%, the service performances of modified asphalt could be better.展开更多
文摘Post-consumer polymeric wastes in form of low-density polyethylene (LDPE) can now be considered suitable as a precursor for the synthesis of low-cost activated carbon (AC). This study produced AC from LDPE using sulphuric acid (H<sub>2</sub>SO<sub>4</sub>) and potassium hydroxide (KOH) as the activating agent. The reaction conditions for pyrolysis were varied in the range of 0.50 - 2.00 M, 400<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C - 500<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C, and 45 - 60 minutes. Physico-chemical investigations reveal that AC yield is significantly dependent on both carbonization temperatures and time. The obtained optimum values of 446.50<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C and 51.09 mins gave a yield of 24% for the base-activated carbon. The high iodine numbers obtained strongly indicate the presence of large surface area and pore volumes is further confirmed using the Scanning Electron Microscopy (SEM) analysis which reveals the presence of pores on the external surface of the carbons. Fourier Transform Infrared Technique (FTIR) analysis further shows that the synthesized compounds are purely carbon with rich oxy-gen-surface complexes on the surface which is as a result of the introduction of the chemical oxidizing agents. The produced carbons were found to have high adsorption affinity for selected inorganic ions which are: Mn<sup>7+</sup>, Co<sup>2+</sup>, and Cr<sup>6+</sup>. Adsorption isotherm results show the adsorption process to be favourable with the Langmuir isotherm parameter RL having values of <1, while the Freudlich adsorption model was found to perfectly fit the data at selected adsorbent dosages and adsorbate concentrations. The pseu-do-second-order model provides the best correlation for the kinetic analysis. The acid-activated carbon was found to have better adsorption capacities than the base-activated carbon.
基金Project(2016TP1007)supported by the Hunan Provincial Science and Technology Plan,China
文摘In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymerization rate of waste PET bottles and the yield of TPA were conducted to determine the optimized experimental conditions,in terms of reaction time,reaction temperature,dosage of ethylene glycol and sodium bicarbonate,amount of distilled water and stirring rate.Then IR spectra and elemental analysis were carried out for the characterization of obtained product.Under optimal experimental conditions,over 98%PET can be depolymerized into the target product(TPA)and the purity and yield of TPA are over 97%and 94%,respectively.Both the experimental and analytical results support a feasible process for the preparation of TPA from waste PET.It is expected that this alcohol alkali hydrolysis method can promise an effective way for the sustainable recycling of waste PET.
基金supported by the China National Key Research and Development Plan Project(Grant No.2018YFA0702300)the National Natural Science Foundation of China(Grant Nos.51950410590 and52227813)。
文摘Polyethylene is the type of waste plastic that accounts for the most significant proportion of municipal solid waste.Waste polyethylene can be valorized via pyrolysis and produce value-added oil,gas,and char.On the other hand,self-sustaining smoldering is an emerging technical means to deal with sand/soil contaminated by organic matter.The high-temperature heat generated by smoldering can be used as a heat source for pyrolyzing waste polyethylene.Therefore,this study investigates numerically the pyrolysis of waste polyethylene driven by self-sustaining smoldering.A novel 4-step lumped kinetic model is proposed for simulating the pyrolysis of waste polyethylene.The results indicate that the operating parameters can determine the pyrolysis product yields by regulating the pyrolysis temperature and the volatile residence time.Note that higher temperatures and longer residence times favor the generation of shorter-chain pyrolysis products because of the intensified volatiles’secondary cracking.It can be concluded that a high interface-wall heat transfer coefficient(400 W m^(-2)K^(-1)),a low PE content(0.20),a high char concentration(2.4%),and a moderate air velocity(0.040 m s^(-1))are beneficial to oil yield.To some extent,this study may broaden the boundaries for the application of self-sustained smoldering-driven pyrolysis.
基金support from the Hong Kong Environment and Conservation Fund through ECF Project(84/2017)Science and Technology Project of Henan Provincial Department of Transportation(2020J6).
文摘Waste plastics,such as waste polyethylene terephthalate(PET)beverage bottles and waste rubber tyres are major municipal solid wastes,which may lead to various environmental problems if they are not appropriately recycled.In this study,the feasibility of collectively recycling the two types of waste into performance-increasing modifiers for asphalt pavements was analyzed.This study aimed to investigate the recycling mechanisms of waste PET-derived additives under the treatment of two amines,triethylenetetramine(TETA)and ethanolamine(EA),and characterize the performances of these additives in modifying rubberized bitumen,a bitumen modified by waste tyre rubber.To this end,infrared spectroscopy and thermal analyses were carried out on the two PET-derived additives(PET–TETA and PET–EA).In addition,infrared spectroscopy,viscosity,dynamic shear rheology,and multiple stress creep recovery tests were performed on the rubberized bitumen samples modified by the two PET-derived additives.We concluded that waste PET can be chemically upcycled into functional additives,which can increase the overall performance of the rubberized bitumen.The recycling method developed in this study not only helps alleviate the landfilling problems of both waste PET plastic and scrap tyres,but also turns these wastes into value-added new materials for building durable pavements.
基金the supports provided by National Iranian Oil Engineering and Construction Company(NIOEC)。
文摘The oxidative desulfurization(ODS) process is one of the new desulfurization processes for the production of clean fuels. Despite the benefits of the ODS process, this process faces several important challenges. One of the most important challenges of this process is the management of a waste which is rich of sulfone compounds.In the present study, a new strategy which is the addition of waste to the bitumen with other solid waste such as high density polyethylene(HDPE) waste has been investigated. The experimental design method was applied to investigate the effect of addition of the sulfone and HDPE wastes to the properties of the bitumen blends including degree of penetration, softening point, and mass loss. It was found that the sulfone waste can be added to the bitumen as a softener. The results showed that several grades of bitumen including 50/60, 60/70, 85/100 can be produced through the addition of sulfone waste along with the HDPE waste to the base 60/70 bitumen.In general, the application of simple processes such as mixing the wastes with the bitumen can reduce the cost of waste management, considerably.
文摘In this study,it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways.It is shown that the modified asphalt can meet the performance index requirements when the components are present with a certain proportion or relative ratio(1:3.5).The dispersion process of the masterbatch in base asphalt can effectively be implemented,with good results and a smaller mixing time.The proposed approach may be regarded as a good strategy to achieve energy savings and protection of the environment.
文摘This study presents the application of artificial neural networks(ANN)and least square support vector machine(LS-SVM)for prediction of Marshall parameters obtained from Marshall tests for waste polyethylene(PE)modified bituminous mixtures.Waste polyethylene in the form of fibres processed from utilized milk packets has been used to modify the bituminous mixes in order to improve their engineering properties.Marshall tests were carried out on mix specimens with variations in polyethylene and bitumen contents.It has been observed that the addition of waste polyethylene results in the improvement of Marshall characteristics such as stability,flow value and air voids,used to evaluate a bituminous mix.The proposed neural network(NN)model uses the quantities of ingredients used for preparation of Marshall specimens such as polyethylene,bitumen and aggregate in order to predict the Marshall stability,flow value and air voids obtained from the tests.Out of two techniques used,the NN based model is found to be compact,reliable and predictable when compared with LS-SVM model.A sensitivity analysis has been performed to identify the importance of the parameters considered.
基金support provided by the National Natural Science Foundation of China(Grant Nos. 51002118 and 51172180)Shaanxi Programs for Science and Technology Development(2011)+1 种基金Xi'an Programs for Industrial Applications(Grant No.CXY1129-3)the Beilin District Programs for Science and Technology Development(Grant No. GX1109)
文摘Waste polyethylene packaging (WPE) was used to modify asphalt, and hot storage stability of the modified asphalt was studied in this paper. The morphological change and component loss of WPE modified asphalt were characterized by fluorescence microscopy, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetry (TG) and isolation testing. In addition, the mechanism of the hot storage stability of WPE modified asphalt was discussed. The results showed that the modification of asphalt with WPE was a physical process. It was found that the filament or partly network-like structure formed in the modified asphalt system was beneficial to improving the hot storage stability. Moreover, the addition of WPE resulted in a decrease in both the light components volatilization and the macromolecules decomposition of asphalt. It was demonstrated that when the content of WPE in matrix asphalt was less than 10 wt%, the service performances of modified asphalt could be better.