In this work, a series of polyethyleneimine (PEI) functionalized commercial silica gel were prepared by wet impregnation method and used as CO2 sorbent. The as-prepared sorbents were characterized by N2 adsorption, ...In this work, a series of polyethyleneimine (PEI) functionalized commercial silica gel were prepared by wet impregnation method and used as CO2 sorbent. The as-prepared sorbents were characterized by N2 adsorption, FT-1R and SEM techniques. CO2 capture was tested in a fixed bed reactor using a simulated flue gas containing 15.1% CO2 in a temperature range of 25-100 ~C. The effects of sorption temperature and amine content on CO2 uptake of the adsorbents were investigated. The silica gel with a 30 wt% PEI loading manifested the largest CO2 uptake of 93.4 mgcoz/gadsorbent (equal to 311.3 mg^oz/gPEI) among the tested sorbents under the conditions of 15.1% (v/v) CO2 in N2 at 75 ~C and atmospheric pressure. Moreover, it was rather low-cost. In addition, the PEI-impregnated silica gel exhibited stable adsorption-desorption behavior during 5 consecutive test cycles. These results suggest that the PEI-impregnated silica gel is a promising and cost-effective sorbent for CO2 capture from flue gas and other stationary sources with low CO2 concentration.展开更多
A novel method to prepare crosslinked polyethyleneimine (CPEI) hollow nanospheres was reported. Uniform silica nanospheres were used as templates, 3-aminopropyl trimethoxysilane (APS) was immobilized on the surfac...A novel method to prepare crosslinked polyethyleneimine (CPEI) hollow nanospheres was reported. Uniform silica nanospheres were used as templates, 3-aminopropyl trimethoxysilane (APS) was immobilized on the surface of silica nanospheres as couple agent. Aziridine was initiated ring-opening polymerization with the amino groups in APS to form polyethyleneimine (PEI) shell layer. 1,4-Butanediol diacrylate was utilized to crosslink PEI polymeric shell. The silica nanospheres in core were etched by hydrofluoric acid to obtain hollow CPEI nanospheres. The hollow nanospheres were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA).展开更多
Polyethyleneimine(PEI)modified palygorskite(Pal)was used for the adsorption of Cr(VI)in aqueous solution.The absorbent was characterized by Fourier transform infrared spectroscopy(FT-IR)and thermogravimetric analysis(...Polyethyleneimine(PEI)modified palygorskite(Pal)was used for the adsorption of Cr(VI)in aqueous solution.The absorbent was characterized by Fourier transform infrared spectroscopy(FT-IR)and thermogravimetric analysis(TGA).Characterized results confirmed that the Pal has been successfully modified by PEI.The modification of PEI increased the Cr(VI)adsorption performance of the Pal by the adsorption combined reduction mechanism,and amino groups of the adsorbent play the main role in the enhanced Cr(VI)adsorption.The maximum adsorption capacity was 51.10 mg·g^-1 at pH4.0 and 25°C.The adsorption kinetics of Cr(VI)on the adsorbent conforms to the Langmuir isotherm model.The maximum adsorption occurs at pH3,and then the adsorption capacity of PEI-Pal was decreased with the increase of p H values.The adsorption kinetics of Cr(VI)on PEI-Pal was modeled with pseudo-second-order model.The addition of Cl^-,SO4^2-and PO4^3-reduced the Cr(VI)adsorption by competition with Cr(VI)for the active sites of PEI-Pal.The Cr(VI)saturated PEI-Pal can be regenerated in alkaline solution,and the adsorption capacity can still be maintained at 30.44 mg·g^-1 after 4 cycles.The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI)in aqueous solutions.展开更多
文摘In this work, a series of polyethyleneimine (PEI) functionalized commercial silica gel were prepared by wet impregnation method and used as CO2 sorbent. The as-prepared sorbents were characterized by N2 adsorption, FT-1R and SEM techniques. CO2 capture was tested in a fixed bed reactor using a simulated flue gas containing 15.1% CO2 in a temperature range of 25-100 ~C. The effects of sorption temperature and amine content on CO2 uptake of the adsorbents were investigated. The silica gel with a 30 wt% PEI loading manifested the largest CO2 uptake of 93.4 mgcoz/gadsorbent (equal to 311.3 mg^oz/gPEI) among the tested sorbents under the conditions of 15.1% (v/v) CO2 in N2 at 75 ~C and atmospheric pressure. Moreover, it was rather low-cost. In addition, the PEI-impregnated silica gel exhibited stable adsorption-desorption behavior during 5 consecutive test cycles. These results suggest that the PEI-impregnated silica gel is a promising and cost-effective sorbent for CO2 capture from flue gas and other stationary sources with low CO2 concentration.
基金This work was financially supported by the National Basic Research Program of China(National 973 program,No.2005 CB623903).
文摘A novel method to prepare crosslinked polyethyleneimine (CPEI) hollow nanospheres was reported. Uniform silica nanospheres were used as templates, 3-aminopropyl trimethoxysilane (APS) was immobilized on the surface of silica nanospheres as couple agent. Aziridine was initiated ring-opening polymerization with the amino groups in APS to form polyethyleneimine (PEI) shell layer. 1,4-Butanediol diacrylate was utilized to crosslink PEI polymeric shell. The silica nanospheres in core were etched by hydrofluoric acid to obtain hollow CPEI nanospheres. The hollow nanospheres were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA).
基金funded by the National Natural Science Foundation of China(21677092)the Scientific Research Program funded by Shaanxi Provincial Education Department(15JK1095)。
文摘Polyethyleneimine(PEI)modified palygorskite(Pal)was used for the adsorption of Cr(VI)in aqueous solution.The absorbent was characterized by Fourier transform infrared spectroscopy(FT-IR)and thermogravimetric analysis(TGA).Characterized results confirmed that the Pal has been successfully modified by PEI.The modification of PEI increased the Cr(VI)adsorption performance of the Pal by the adsorption combined reduction mechanism,and amino groups of the adsorbent play the main role in the enhanced Cr(VI)adsorption.The maximum adsorption capacity was 51.10 mg·g^-1 at pH4.0 and 25°C.The adsorption kinetics of Cr(VI)on the adsorbent conforms to the Langmuir isotherm model.The maximum adsorption occurs at pH3,and then the adsorption capacity of PEI-Pal was decreased with the increase of p H values.The adsorption kinetics of Cr(VI)on PEI-Pal was modeled with pseudo-second-order model.The addition of Cl^-,SO4^2-and PO4^3-reduced the Cr(VI)adsorption by competition with Cr(VI)for the active sites of PEI-Pal.The Cr(VI)saturated PEI-Pal can be regenerated in alkaline solution,and the adsorption capacity can still be maintained at 30.44 mg·g^-1 after 4 cycles.The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI)in aqueous solutions.