Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as ...Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as better miscibility between the two components, low crystallinity and better hydrophilicity, which can be modulated by adjusting the block lengths of the two components.展开更多
A series of random and block poly( L-lactide-co-e-caprolactone ) ( PCLA ) copolymers whh different composition are prepared using stannous octaoate as catalyst.The effects of the amount of initiator on the intrins...A series of random and block poly( L-lactide-co-e-caprolactone ) ( PCLA ) copolymers whh different composition are prepared using stannous octaoate as catalyst.The effects of the amount of initiator on the intrinsic viscosity have been investigated. The structure of the PCLA copolymers is characterized by means of nuclear magnetic resonance( NMR ), Fourier transform infrared spectrum ( FTIR ), differential scanning calorimetry ( DSC ) and X- ray diffraction ( XRD ) methods. It is shown that the synthesis condition and the composition of copolymers obrious influence on the structure of PCLA copolymers. Hydrolytic degradation of the copolymers in a PBS solution of pH 7.4 at 37.0℃ shows that the copolymers of different composhions degrade at different rates.展开更多
Methoxy poly(ethylene glycol)-poly(D,L-lactide) block copolymers (PEG-PLA) were prepared through ring-opening polymerization.The oil in water suspension method was used to prepare block copolymer micelles. The critica...Methoxy poly(ethylene glycol)-poly(D,L-lactide) block copolymers (PEG-PLA) were prepared through ring-opening polymerization.The oil in water suspension method was used to prepare block copolymer micelles. The critical micelle concentration (CMC) by fluorescence spectroscopy was 0.0056 mg·ml -1 . The physical state of the inner core region of micelles was characterized with 1HNMR. The size of indomethacin (IMC) loaded micelles measured by dynamic light scattering (DLS) showed narrow monodisperse size distribution and the average diameters were less than 50 nm. In addition, the nanoparticles with relatively high drug loading content (DLC) were obtained.展开更多
In order to develop a novel controlled-release material, we previously attempted to impregnate poly(L-lactide) (poly(L-LA)), poly(L-LA-ran-CL) (CL: ε-caprolactone) or poly(L-LA-ran-TEMC) (TEMC: tetramethylene carbona...In order to develop a novel controlled-release material, we previously attempted to impregnate poly(L-lactide) (poly(L-LA)), poly(L-LA-ran-CL) (CL: ε-caprolactone) or poly(L-LA-ran-TEMC) (TEMC: tetramethylene carbonate) with low boiling point, organic useful compounds using supercritical carbon dioxide (scCO2) as the solvent. In this work, the factors influencing impregnation of poly (L-LA) random copolymers with useful compounds were investigated under scCO2 using the copolymers previously used. The influence of temperature, pressure, and time on the impregnation contents of the useful compounds on the copolymers was evaluated. The polymer used, which is a base of this material, was poly(L-LA-ran-CL), poly(L-LA-ran-TEMC), or poly(L-LA-ran-DXO) (DXO: 1,5-dioxepan-2-one). Statistical random copolymers of L-LA with CL, TEMC, or DXO were synthesized using Sn(oct)2 as a catalyst at 150°C for 24 h without solvent. Preparation of the controlled-release materials was carried out using essential bark oil from Thujopsis dolabrata var. hondae and synthetic L-LA random copolymers as a base material under scCO2. The impregnation experiment, which investigated the influence of pressure, was conducted in the range of 10 to 20 MPa. The influence of temperature on impregnation was carried out at 40°C to 100°C. Impregnation time was varied from 1 to 5 h. The pressure of essential oil impregnated into poly(L-LA) random copolymers was the highest at 14 MPa. In the influence of temperature on impregnation, the amount of essential oil increased with increasing temperature.展开更多
Poly ( l- lactide- co-glycolide ) ( PLGA ) with different compositions was prepared using stannous octaoate as catalyst by bulk ring-opening copolymerization of l-lactide and glycolide. The structure and properti...Poly ( l- lactide- co-glycolide ) ( PLGA ) with different compositions was prepared using stannous octaoate as catalyst by bulk ring-opening copolymerization of l-lactide and glycolide. The structure and properties of the PLGA copolymers were cbaracterized by means of attenuated total reflectance-Fourier transform infrared (ATR-FTIR), ^1H NMR, differential scanning calorimeter ( DSC and X-ray diffraction (XRD) methods, The experimented results indicate that the synthetic conditions and the composition of copolymers have art obvious influence on the structure of PLGA copolymers, The degradation rate of eopolymers increased with the increasing of the glycolide component in the copolymers.展开更多
Novel triblock copolymers of poly (L-lactide)-poly (ethylene glycol)-sebacate-poly (ethylene glycol)-poly (L-lactide) were synthesized by Ring-Opening Polymerization of different ratios of L-lactide with other three p...Novel triblock copolymers of poly (L-lactide)-poly (ethylene glycol)-sebacate-poly (ethylene glycol)-poly (L-lactide) were synthesized by Ring-Opening Polymerization of different ratios of L-lactide with other three pre-prepared poly (ethylene glycol)-sebacate-poly (ethylene glycol) polymers, coded A, B and C which had different poly (ethyleneglycol) chain lengths. The copolymers were characterized by FTIR and <sup>1</sup>H NMR spectroscopy, which indicated that the reaction of ROP took place and led to producing nine triblock copolymers having new different lactide chain lengths (n = 10, 25 and 50), AL<sub>10</sub>, AL<sub>25</sub>, AL<sub>50</sub>,BL<sub>10</sub>, BL<sub>25</sub>, BL<sub>50</sub>, CL<sub>10</sub>, CL<sub>25</sub>, and CL<sub>50</sub>. Nine polymer networks were also prepared from copolymers with sodium alginate S<sub>1</sub> - S<sub>9</sub> and finally mixed with a solution of hydroxyl ethyl cellulose to form SH<sub>1</sub> - SH<sub>9</sub>.展开更多
Nanoparticles of biodegradable methoxy poly(ethylene glycol)-b-polyester amphiphilic diblock copolymers have widely investigated for use as controlled release drug delivery carriers. In this work, blend nanoparticles ...Nanoparticles of biodegradable methoxy poly(ethylene glycol)-b-polyester amphiphilic diblock copolymers have widely investigated for use as controlled release drug delivery carriers. In this work, blend nanoparticles of methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (MPEG-b-PDLL) and methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (MPEG- b-PCL) were prepared by nano-precipitation method without any surfactants. 1H-NMR spectra showed significant difference in integral peak areas, suggesting the nanoparticles with different MPEG-b-PDLL/MPEG-b-PCL blend ratios can be prepared. Transmission electron microscope revealed the blend nanoparticles had nearly spherical in shape with smooth surface. Average size of the blend nanoparticles obtained from light-scattering analysis slightly decreased with increase in blend ratio of MPEG-b-PCL. The MPEG-b-PDLL and MPEG-b-PCL were amorphous and semi-crystalline, respectively. Thermal transition properties of the blend nanoparticles were studied with differential scanning calorimetry (DSC). The DSC results showed that glass transition temperatures of the blend nanoparticles decreased and heats of melting steadily increased, while the melting temperature did not change as the MPEG-b-PCL blend ratio increased. This indicates the miscibility of MPEG-b-PDLL and MPEG-b-PCL in the amorphous phase of the blend nanoparticles. Thermogravimetric analysis showed that the blend nanoparticles clearly exhibited two thermal decomposition steps due to MPEG-b-PDLL decomposition followed with MPEG-b-PCL. The blend nanoparticles had two temperatures of maximum decomposition rate (Td, max) accorded to each blend component. The Td, max of MPEG-b- PDLL phase significantly decreased, while Td, max of MPEG-b-PCL phase did not change as the MPEG-b-PCL blend ratio increased. These results suggested that the desired thermal properties of blend nanoparticles can be tailored by varying the blend ratio.展开更多
Sequential addition of L-lactide(LA) followed by ε-caprolactone(CL), and simultaneous addition of both monomers, afforded random LA/CL copolymers in the presence of lanthanide aryloxides under mild conditions. Transe...Sequential addition of L-lactide(LA) followed by ε-caprolactone(CL), and simultaneous addition of both monomers, afforded random LA/CL copolymers in the presence of lanthanide aryloxides under mild conditions. Transesterification was proved to play a predominant role in random copolymer formation. Moreover, treatment of poly(L-lactide) with ε-CL led to random copolymer formation, which provides a new strategy not only to prepare random LA/CL copolymers, but also to directly modify PLLA.展开更多
Biodegradable poly(L-lactide-r-trimethene carbonate) copolymers (P(LLA-co-TMC)) with different compositions were synthesized. The degradation of the copolymers was carried out in phosphate buffer saline solutio...Biodegradable poly(L-lactide-r-trimethene carbonate) copolymers (P(LLA-co-TMC)) with different compositions were synthesized. The degradation of the copolymers was carried out in phosphate buffer saline solutions (pH = 7.4) at 37℃. The compositions, structure and properties of the copolymers in degradation were characterized with IH-NMR, DSC, XRD, GPC, and SEM. The weight loss of the P(LLA-co-TMC) 50/50 was much faster than that of P(LLA-co-TMC) 85/15 and PLLA homopolymer. Interestingly, though the molecular weight of the compolymers decreased greatly during degradation, the compositions were rarely varied. After long time degradation, the PLLA segments were induced to crystallize in the P(LLA-co-TMC) 85/15 copolymer. The SEM observation of the surface and cross-section of P(LLA-co- TMC) 85/15 copolymer films found it was similar to the bulk degradation of PLLA homopolymer.展开更多
A series of multiblock copolymers of PLLA\|PEG(PLE) with high molecular weight were synthesized by coupling PLLA\|PEG\|PLLA triblock copolymers with succinic anhydride in the presence of ( N,N\| dimethylamino) pyridin...A series of multiblock copolymers of PLLA\|PEG(PLE) with high molecular weight were synthesized by coupling PLLA\|PEG\|PLLA triblock copolymers with succinic anhydride in the presence of ( N,N\| dimethylamino) pyridine(DMAP) and dicyclohexylcarbodimide (DCC).The results of the viscometry measurement,GPC and 1H\|NMR,elucidated that multiblock PLE copolymers with high content of short PEG segments( M n=2000) had been successfully obtained.The crystallinity of the copolymers was investigated by X\|ray diffraction.Mechanical testing showed that multiblock copolymers had relatively high tensile strength and large elongation.In a word,the measurements showed that the multiblock PLE copolymers had high content of short PEG segments( M n=2000),high molecular weight( M w~100,000),excellent hydrophilicity and mechanical properties.The results of cells cultured on the multiblock PLE copolymer indicated that it might be suitable to be utilized as cell scaffold for tissue engineering.展开更多
合成葡聚糖-聚乳酸接枝共聚物,并以此为载体,选择盐酸阿霉素为模型药物,利用纳米沉淀法和双乳法构建出了载药纳米粒子,并通过透射电镜(scanning electron microscope,TEM)、动态光散射(dynamic light scattering,DLS)、紫外(UV-vis)对...合成葡聚糖-聚乳酸接枝共聚物,并以此为载体,选择盐酸阿霉素为模型药物,利用纳米沉淀法和双乳法构建出了载药纳米粒子,并通过透射电镜(scanning electron microscope,TEM)、动态光散射(dynamic light scattering,DLS)、紫外(UV-vis)对其形貌、粒径及包封率进行了表征,结果表明:不同共聚物/药物比例会影响载药纳米粒子的粒径、粒径分布及包封率.此外,载药纳米粒子的体外释放实验表明:在弱碱条件(pH=7.4)下的释放速度比在弱酸条件(pH=5.0)下的慢,说明释放介质的pH对其释放性能有较大影响,有利于药物在肿瘤细胞中的控释.展开更多
A series of tri\|component copolyesters composed of glycolide/lactide/caprolactone (PGLC) were obtained by bulk ring\|opening copolymerization of glycolide(GA),L\|lactide (L\|LA) and caprolactone(CL) with Sn(Oct)\-2 a...A series of tri\|component copolyesters composed of glycolide/lactide/caprolactone (PGLC) were obtained by bulk ring\|opening copolymerization of glycolide(GA),L\|lactide (L\|LA) and caprolactone(CL) with Sn(Oct)\-2 as catalyst for the purpose of biomedical applications.Structure of the PGLC copolyester was characterized by means of GPC,\{\}\+1H\|NMR,DSC and X\|ray diffractometry techniques.It was found that the obtained polymer was a pure copolymer that consisting of no other side\|produced polymers and the copolyester was a random copolymer that presented an amorphous structure in a large range of composition.The hydrophilicity and degradation rate of the copolyester were also studied in detail and it was found that the hydrophilicity and hydrolysis rate were improved by increasing the amount of GA.The mechanical properties of the PGLC copolyester were identified by measuring the tensile strength and the elongation at break.The elongation of the copolyester could be improved by introducing CL to the PLGA.That the PGLC copolyester was a potential biomedical material was suggested.展开更多
基金The authors are Indebted to the National Basic Science Rescarch and Development Grants(973)(No.1999054306).
文摘Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as better miscibility between the two components, low crystallinity and better hydrophilicity, which can be modulated by adjusting the block lengths of the two components.
文摘A series of random and block poly( L-lactide-co-e-caprolactone ) ( PCLA ) copolymers whh different composition are prepared using stannous octaoate as catalyst.The effects of the amount of initiator on the intrinsic viscosity have been investigated. The structure of the PCLA copolymers is characterized by means of nuclear magnetic resonance( NMR ), Fourier transform infrared spectrum ( FTIR ), differential scanning calorimetry ( DSC ) and X- ray diffraction ( XRD ) methods. It is shown that the synthesis condition and the composition of copolymers obrious influence on the structure of PCLA copolymers. Hydrolytic degradation of the copolymers in a PBS solution of pH 7.4 at 37.0℃ shows that the copolymers of different composhions degrade at different rates.
文摘Methoxy poly(ethylene glycol)-poly(D,L-lactide) block copolymers (PEG-PLA) were prepared through ring-opening polymerization.The oil in water suspension method was used to prepare block copolymer micelles. The critical micelle concentration (CMC) by fluorescence spectroscopy was 0.0056 mg·ml -1 . The physical state of the inner core region of micelles was characterized with 1HNMR. The size of indomethacin (IMC) loaded micelles measured by dynamic light scattering (DLS) showed narrow monodisperse size distribution and the average diameters were less than 50 nm. In addition, the nanoparticles with relatively high drug loading content (DLC) were obtained.
文摘In order to develop a novel controlled-release material, we previously attempted to impregnate poly(L-lactide) (poly(L-LA)), poly(L-LA-ran-CL) (CL: ε-caprolactone) or poly(L-LA-ran-TEMC) (TEMC: tetramethylene carbonate) with low boiling point, organic useful compounds using supercritical carbon dioxide (scCO2) as the solvent. In this work, the factors influencing impregnation of poly (L-LA) random copolymers with useful compounds were investigated under scCO2 using the copolymers previously used. The influence of temperature, pressure, and time on the impregnation contents of the useful compounds on the copolymers was evaluated. The polymer used, which is a base of this material, was poly(L-LA-ran-CL), poly(L-LA-ran-TEMC), or poly(L-LA-ran-DXO) (DXO: 1,5-dioxepan-2-one). Statistical random copolymers of L-LA with CL, TEMC, or DXO were synthesized using Sn(oct)2 as a catalyst at 150°C for 24 h without solvent. Preparation of the controlled-release materials was carried out using essential bark oil from Thujopsis dolabrata var. hondae and synthetic L-LA random copolymers as a base material under scCO2. The impregnation experiment, which investigated the influence of pressure, was conducted in the range of 10 to 20 MPa. The influence of temperature on impregnation was carried out at 40°C to 100°C. Impregnation time was varied from 1 to 5 h. The pressure of essential oil impregnated into poly(L-LA) random copolymers was the highest at 14 MPa. In the influence of temperature on impregnation, the amount of essential oil increased with increasing temperature.
文摘Poly ( l- lactide- co-glycolide ) ( PLGA ) with different compositions was prepared using stannous octaoate as catalyst by bulk ring-opening copolymerization of l-lactide and glycolide. The structure and properties of the PLGA copolymers were cbaracterized by means of attenuated total reflectance-Fourier transform infrared (ATR-FTIR), ^1H NMR, differential scanning calorimeter ( DSC and X-ray diffraction (XRD) methods, The experimented results indicate that the synthetic conditions and the composition of copolymers have art obvious influence on the structure of PLGA copolymers, The degradation rate of eopolymers increased with the increasing of the glycolide component in the copolymers.
文摘Novel triblock copolymers of poly (L-lactide)-poly (ethylene glycol)-sebacate-poly (ethylene glycol)-poly (L-lactide) were synthesized by Ring-Opening Polymerization of different ratios of L-lactide with other three pre-prepared poly (ethylene glycol)-sebacate-poly (ethylene glycol) polymers, coded A, B and C which had different poly (ethyleneglycol) chain lengths. The copolymers were characterized by FTIR and <sup>1</sup>H NMR spectroscopy, which indicated that the reaction of ROP took place and led to producing nine triblock copolymers having new different lactide chain lengths (n = 10, 25 and 50), AL<sub>10</sub>, AL<sub>25</sub>, AL<sub>50</sub>,BL<sub>10</sub>, BL<sub>25</sub>, BL<sub>50</sub>, CL<sub>10</sub>, CL<sub>25</sub>, and CL<sub>50</sub>. Nine polymer networks were also prepared from copolymers with sodium alginate S<sub>1</sub> - S<sub>9</sub> and finally mixed with a solution of hydroxyl ethyl cellulose to form SH<sub>1</sub> - SH<sub>9</sub>.
文摘Nanoparticles of biodegradable methoxy poly(ethylene glycol)-b-polyester amphiphilic diblock copolymers have widely investigated for use as controlled release drug delivery carriers. In this work, blend nanoparticles of methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (MPEG-b-PDLL) and methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (MPEG- b-PCL) were prepared by nano-precipitation method without any surfactants. 1H-NMR spectra showed significant difference in integral peak areas, suggesting the nanoparticles with different MPEG-b-PDLL/MPEG-b-PCL blend ratios can be prepared. Transmission electron microscope revealed the blend nanoparticles had nearly spherical in shape with smooth surface. Average size of the blend nanoparticles obtained from light-scattering analysis slightly decreased with increase in blend ratio of MPEG-b-PCL. The MPEG-b-PDLL and MPEG-b-PCL were amorphous and semi-crystalline, respectively. Thermal transition properties of the blend nanoparticles were studied with differential scanning calorimetry (DSC). The DSC results showed that glass transition temperatures of the blend nanoparticles decreased and heats of melting steadily increased, while the melting temperature did not change as the MPEG-b-PCL blend ratio increased. This indicates the miscibility of MPEG-b-PDLL and MPEG-b-PCL in the amorphous phase of the blend nanoparticles. Thermogravimetric analysis showed that the blend nanoparticles clearly exhibited two thermal decomposition steps due to MPEG-b-PDLL decomposition followed with MPEG-b-PCL. The blend nanoparticles had two temperatures of maximum decomposition rate (Td, max) accorded to each blend component. The Td, max of MPEG-b- PDLL phase significantly decreased, while Td, max of MPEG-b-PCL phase did not change as the MPEG-b-PCL blend ratio increased. These results suggested that the desired thermal properties of blend nanoparticles can be tailored by varying the blend ratio.
基金supported by the National Natural Science Foundation of China (21402138, 21674070)the Major Research Project of the Natural Science of the Jiangsu Higher Education Institutions (14KJA150007)+1 种基金the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201708)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Sequential addition of L-lactide(LA) followed by ε-caprolactone(CL), and simultaneous addition of both monomers, afforded random LA/CL copolymers in the presence of lanthanide aryloxides under mild conditions. Transesterification was proved to play a predominant role in random copolymer formation. Moreover, treatment of poly(L-lactide) with ε-CL led to random copolymer formation, which provides a new strategy not only to prepare random LA/CL copolymers, but also to directly modify PLLA.
基金financially supported by the National Basic Research Program of China (National 973 program,No. 2011CB606206)the National Natural Science Foundation of China (Nos. 50830105, 51133004)+1 种基金Program for New Century Excellent Talents in Universities, Ministry of Education (MOE, NCET-10-0564)Program for Changjiang Scholars and Innovative Research Teams in Universities (IRT1163)
文摘Biodegradable poly(L-lactide-r-trimethene carbonate) copolymers (P(LLA-co-TMC)) with different compositions were synthesized. The degradation of the copolymers was carried out in phosphate buffer saline solutions (pH = 7.4) at 37℃. The compositions, structure and properties of the copolymers in degradation were characterized with IH-NMR, DSC, XRD, GPC, and SEM. The weight loss of the P(LLA-co-TMC) 50/50 was much faster than that of P(LLA-co-TMC) 85/15 and PLLA homopolymer. Interestingly, though the molecular weight of the compolymers decreased greatly during degradation, the compositions were rarely varied. After long time degradation, the PLLA segments were induced to crystallize in the P(LLA-co-TMC) 85/15 copolymer. The SEM observation of the surface and cross-section of P(LLA-co- TMC) 85/15 copolymer films found it was similar to the bulk degradation of PLLA homopolymer.
文摘A series of multiblock copolymers of PLLA\|PEG(PLE) with high molecular weight were synthesized by coupling PLLA\|PEG\|PLLA triblock copolymers with succinic anhydride in the presence of ( N,N\| dimethylamino) pyridine(DMAP) and dicyclohexylcarbodimide (DCC).The results of the viscometry measurement,GPC and 1H\|NMR,elucidated that multiblock PLE copolymers with high content of short PEG segments( M n=2000) had been successfully obtained.The crystallinity of the copolymers was investigated by X\|ray diffraction.Mechanical testing showed that multiblock copolymers had relatively high tensile strength and large elongation.In a word,the measurements showed that the multiblock PLE copolymers had high content of short PEG segments( M n=2000),high molecular weight( M w~100,000),excellent hydrophilicity and mechanical properties.The results of cells cultured on the multiblock PLE copolymer indicated that it might be suitable to be utilized as cell scaffold for tissue engineering.
文摘合成葡聚糖-聚乳酸接枝共聚物,并以此为载体,选择盐酸阿霉素为模型药物,利用纳米沉淀法和双乳法构建出了载药纳米粒子,并通过透射电镜(scanning electron microscope,TEM)、动态光散射(dynamic light scattering,DLS)、紫外(UV-vis)对其形貌、粒径及包封率进行了表征,结果表明:不同共聚物/药物比例会影响载药纳米粒子的粒径、粒径分布及包封率.此外,载药纳米粒子的体外释放实验表明:在弱碱条件(pH=7.4)下的释放速度比在弱酸条件(pH=5.0)下的慢,说明释放介质的pH对其释放性能有较大影响,有利于药物在肿瘤细胞中的控释.
文摘A series of tri\|component copolyesters composed of glycolide/lactide/caprolactone (PGLC) were obtained by bulk ring\|opening copolymerization of glycolide(GA),L\|lactide (L\|LA) and caprolactone(CL) with Sn(Oct)\-2 as catalyst for the purpose of biomedical applications.Structure of the PGLC copolyester was characterized by means of GPC,\{\}\+1H\|NMR,DSC and X\|ray diffractometry techniques.It was found that the obtained polymer was a pure copolymer that consisting of no other side\|produced polymers and the copolyester was a random copolymer that presented an amorphous structure in a large range of composition.The hydrophilicity and degradation rate of the copolyester were also studied in detail and it was found that the hydrophilicity and hydrolysis rate were improved by increasing the amount of GA.The mechanical properties of the PGLC copolyester were identified by measuring the tensile strength and the elongation at break.The elongation of the copolyester could be improved by introducing CL to the PLGA.That the PGLC copolyester was a potential biomedical material was suggested.