The main purpose of this paper is to investigate the univalence of normalized polyharmonic mappings with bounded length distortions in the unit disk.We first establish the coefficient estimates for polyharmonic mappin...The main purpose of this paper is to investigate the univalence of normalized polyharmonic mappings with bounded length distortions in the unit disk.We first establish the coefficient estimates for polyharmonic mappings with bounded length distortions.Then,using these results,we establish five Landau-type theorems for subclasses of polyharmonic mappings F and L(F),where F has bounded length distortion and L is a differential operator.展开更多
In the paper we study questions about solvability of some boundary value prob- lems for a non-homogenous poly-harmonic equation. As a boundary operator we consider differentiation operator of fractional order in Mille...In the paper we study questions about solvability of some boundary value prob- lems for a non-homogenous poly-harmonic equation. As a boundary operator we consider differentiation operator of fractional order in Miller-Ross sense. The considered problem is a generalization of well-known Dirichlet and Neumann problems.展开更多
Let m be a positive integer and B be the unit ball of Rn (n≥2). We investigate the existence, uniqueness and the asymptotic behavior of a positive continuous solution to the following semilinear polyharmonic bounda...Let m be a positive integer and B be the unit ball of Rn (n≥2). We investigate the existence, uniqueness and the asymptotic behavior of a positive continuous solution to the following semilinear polyharmonic boundary value problem (-△)mu=a1(x)uα1+a2(x)uα2 , lim|x|→1 u(x) (1-|x|)m-1 =0, where α1,α2∈(-1, 1) and a1, a2 are two nonnegative measurable functions on B satisfying some appropriate assumptions related to Karamata regular variation theory.展开更多
In this paper, we are concerned with the following problem:{(-△)ku=λf(x)|u|q-2u+g(x)|u|k*-2u, x∈Ω, u∈H k0 (Ω), where Ωis a bounded domain in RN with N ≥2k+1, 1〈q〈2,λ〉0, f, g are continuous ...In this paper, we are concerned with the following problem:{(-△)ku=λf(x)|u|q-2u+g(x)|u|k*-2u, x∈Ω, u∈H k0 (Ω), where Ωis a bounded domain in RN with N ≥2k+1, 1〈q〈2,λ〉0, f, g are continuous functions on Ω which are somewhere positive but which may change sign on Ω. k* = N2/N-2k is the critical Sobolev exponent. By extracting the Palais-Smale sequence in the Nehari manifold, the existence of multiple nontrivial solutions to this equation is verified.展开更多
Let 0<α<2,p≥1,m∈ℕ_(+).Consider the positive solution u of the PDE(-△)^(α/2+m)u(x)=u^(p)(x) in R^(n).(0.1) In[1](Transactions of the American Mathematical Society,2021),Cao,Dai and Qin showed that,under the ...Let 0<α<2,p≥1,m∈ℕ_(+).Consider the positive solution u of the PDE(-△)^(α/2+m)u(x)=u^(p)(x) in R^(n).(0.1) In[1](Transactions of the American Mathematical Society,2021),Cao,Dai and Qin showed that,under the condition u∈Lα,(0.1)possesses a super polyharmonic property (-△)^(k+α/2)u≥0 for k=0,1,⋯,m−1.In this paper,we show another kind of super polyharmonic property(−Δ)^(k)u>0 for k=1,⋯,m−1,under the conditions and(−Δ)^(m)u≥0.Both kinds of super polyharmonic properties can lead to an equivalence between(0.1)and the integral equation u(x)=∫_(R^(n))u^(p)(y)/|x-y|^(n-2m-α)dy.One can classify solutions to(0.1)following the work of[2]and[3]by Chen,Li,Ou.展开更多
This paper is devoted to the following high order elliptic problems under the Navier boundary condition: ?Without assuming the standard subcritical polynomial growth condition ensuring the compactness of a bounded (P....This paper is devoted to the following high order elliptic problems under the Navier boundary condition: ?Without assuming the standard subcritical polynomial growth condition ensuring the compactness of a bounded (P.S.) sequence, we show that the Navier boundary value problem has at least a weak nontrivial solution for all λ>0?by using mountain pass theorem.展开更多
In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson ...In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson kernels and a hierarchy of integral operators called higher order Pompeiu operators, we obtain a main result on integral representation solution as well as the uniqueness of the polyharmonic Dirichlet problem under a certain estimate.展开更多
In this paper, we study the existence of solution for some p(x)-polyharmonic Kirchhoff equations. The latter is allowed to vanish at the origin (degenerate case). Firstly, we study the existence of solutions of approx...In this paper, we study the existence of solution for some p(x)-polyharmonic Kirchhoff equations. The latter is allowed to vanish at the origin (degenerate case). Firstly, we study the existence of solutions of approximate equations. Secondly, we prove the existence of the solutions of the original equation. The main tool is the Schauder’s Theorem.展开更多
基金supported by the Natural Science Foundation of Guangdong Province(2021A1515010058)supported by the Youth Innovation Foundation of Shenzhen Polytechnic University(6024310023K)。
文摘The main purpose of this paper is to investigate the univalence of normalized polyharmonic mappings with bounded length distortions in the unit disk.We first establish the coefficient estimates for polyharmonic mappings with bounded length distortions.Then,using these results,we establish five Landau-type theorems for subclasses of polyharmonic mappings F and L(F),where F has bounded length distortion and L is a differential operator.
基金financially supported by a grant from the Ministry of Science and Education of the Republic of Kazakhstan(0819/GF4)
文摘In the paper we study questions about solvability of some boundary value prob- lems for a non-homogenous poly-harmonic equation. As a boundary operator we consider differentiation operator of fractional order in Miller-Ross sense. The considered problem is a generalization of well-known Dirichlet and Neumann problems.
文摘Let m be a positive integer and B be the unit ball of Rn (n≥2). We investigate the existence, uniqueness and the asymptotic behavior of a positive continuous solution to the following semilinear polyharmonic boundary value problem (-△)mu=a1(x)uα1+a2(x)uα2 , lim|x|→1 u(x) (1-|x|)m-1 =0, where α1,α2∈(-1, 1) and a1, a2 are two nonnegative measurable functions on B satisfying some appropriate assumptions related to Karamata regular variation theory.
基金supported by the National Natural Science Foundation of China(11326139,11326145)Tian Yuan Foundation(KJLD12067)+1 种基金Central Specialized Fundation of SCUEC(CZQ13013)the Project of Jiangxi Province Technology Hall(2014BAB211010)
文摘In this paper, we are concerned with the following problem:{(-△)ku=λf(x)|u|q-2u+g(x)|u|k*-2u, x∈Ω, u∈H k0 (Ω), where Ωis a bounded domain in RN with N ≥2k+1, 1〈q〈2,λ〉0, f, g are continuous functions on Ω which are somewhere positive but which may change sign on Ω. k* = N2/N-2k is the critical Sobolev exponent. By extracting the Palais-Smale sequence in the Nehari manifold, the existence of multiple nontrivial solutions to this equation is verified.
文摘Let 0<α<2,p≥1,m∈ℕ_(+).Consider the positive solution u of the PDE(-△)^(α/2+m)u(x)=u^(p)(x) in R^(n).(0.1) In[1](Transactions of the American Mathematical Society,2021),Cao,Dai and Qin showed that,under the condition u∈Lα,(0.1)possesses a super polyharmonic property (-△)^(k+α/2)u≥0 for k=0,1,⋯,m−1.In this paper,we show another kind of super polyharmonic property(−Δ)^(k)u>0 for k=1,⋯,m−1,under the conditions and(−Δ)^(m)u≥0.Both kinds of super polyharmonic properties can lead to an equivalence between(0.1)and the integral equation u(x)=∫_(R^(n))u^(p)(y)/|x-y|^(n-2m-α)dy.One can classify solutions to(0.1)following the work of[2]and[3]by Chen,Li,Ou.
文摘This paper is devoted to the following high order elliptic problems under the Navier boundary condition: ?Without assuming the standard subcritical polynomial growth condition ensuring the compactness of a bounded (P.S.) sequence, we show that the Navier boundary value problem has at least a weak nontrivial solution for all λ>0?by using mountain pass theorem.
文摘In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson kernels and a hierarchy of integral operators called higher order Pompeiu operators, we obtain a main result on integral representation solution as well as the uniqueness of the polyharmonic Dirichlet problem under a certain estimate.
文摘In this paper, we study the existence of solution for some p(x)-polyharmonic Kirchhoff equations. The latter is allowed to vanish at the origin (degenerate case). Firstly, we study the existence of solutions of approximate equations. Secondly, we prove the existence of the solutions of the original equation. The main tool is the Schauder’s Theorem.