期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Novel polyhydroxy cationic collector N-(2,3-propanediol)-Ndodecylamine: Synthesis and flotation performance to hematite and quartz 被引量:5
1
作者 Wenbao Liu Xiangyu Peng +5 位作者 Wengang Liu Kelin Tong Yanbai Shen Qiang Zhao Sikai Zhao Wenhan Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期115-122,共8页
To enhance the performance of traditional cationic collector,a novel polyhydroxy amine collector N-(2,3-Propanediol)-N-dodecylamine(PDDA)was designed by introducing one propylene glycol group into dodecylamine(DDA).It... To enhance the performance of traditional cationic collector,a novel polyhydroxy amine collector N-(2,3-Propanediol)-N-dodecylamine(PDDA)was designed by introducing one propylene glycol group into dodecylamine(DDA).It was prepared by a nucleophilic substitution reaction,which showed better solubility and hydrophobicity than DDA and was firstly employed as the collector for the separation of hematite and quartz.Flotation tests showed that PDDA had an excellent flotation performance and significantly better selectivity than DDA.In addition,the flotation performance and adsorption mechanism of PDDA on hematite and quartz surfaces were studied using Fourier transform infrared spectroscopy(FTIR),zeta potential and X-ray photoelectron spectroscopy(XPS)tests.These results demonstrated that the interaction between PDDA and the minerals’surfaces was mainly electrostatic adsorption and hydrogen bond,while PDDA tended to adsorb on the surfaces of quartz more than that of hematite.Performance optimization of amine collectors by introducing hydroxyl was also verified,which was of great meaning to the design,development,and application of the polyhydroxy cationic collector.In conclusion,PDDA could be used as a potential collector in the flotation separation of quartz and hematite. 展开更多
关键词 polyhydroxy collector QUARTZ HEMATITE Interaction mechanism Hydrogen bonding
下载PDF
Interaction of polyhydroxy fullerenes with ferrihydrite:adsorption and aggregation 被引量:6
2
作者 Jing Liu Runliang Zhu +5 位作者 Tianyuan Xu Mingwang Laipan Yanping Zhu Qing Zhou Jianxi Zhu Hongping He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第2期1-9,共9页
The rapid development of nanoscience and nanotechnology, with thousands types of nanomaterials being produced, will lead to various environmental impacts. Thus,understanding the behaviors and fate of these nanomateria... The rapid development of nanoscience and nanotechnology, with thousands types of nanomaterials being produced, will lead to various environmental impacts. Thus,understanding the behaviors and fate of these nanomaterials is essential. This study focused on the interaction between polyhydroxy fullerenes(PHF) and ferrihydrite(Fh), a widespread iron(oxyhydr)oxide nanomineral and geosorbent. Our results showed that PHF were effectively adsorbed by Fh. The adsorption isotherm fitted the D-R model well, with an adsorption capacity of 67.1 mg/g. The adsorption mean free energy of 10.72 k J/mol suggested that PHF were chemisorbed on Fh. An increase in the solution p H and a decrease of the Fh surface zeta potential were observed after the adsorption of PHF on Fh; moreover, increasing initial solution p H led to a reduction of adsorption. The Fourier transform infrared spectra detected a red shift of C–O stretching from 1075 to 1062 cm-1 and a decrease of Fe–O bending, implying the interaction between PHF oxygenic functional groups and Fh surface hydroxyls. On the other hand, PHF affected the aggregation and reactivity of Fh by changing its surface physicochemical properties. Aggregation of PHF and Fh with individual particle sizes increasing from 2 nm to larger than 5 nm was measured by atomic force microscopy. The uniform distribution of C and Fe suggested that the aggregates of Fh were possibly bridged by PHF. Our results indicated that the interaction between PHF and Fh could evidently influence the migration of PHF, as well as the aggregation and reactivity of Fh. 展开更多
关键词 NANOPARTICLES polyhydroxy fullerenes FERRIHYDRITE ADSORPTION AGGREGATION
原文传递
催化铁与生物法耦合除磷工艺特性 被引量:7
3
作者 刘飞萍 马鲁铭 《环境工程学报》 CAS CSCD 北大核心 2014年第2期429-435,共7页
为了研究催化铁与生物耦合后对生物除磷特性的影响,实验采用人工配水用厌氧/好氧间歇流式富集培养聚磷微生物。对比发现,催化铁与生物耦合组中厌氧末段ORP降低了约60 mV,pH值小幅度的上升(≤0.3),整个培养过程中铁离子的浓度开始快速增... 为了研究催化铁与生物耦合后对生物除磷特性的影响,实验采用人工配水用厌氧/好氧间歇流式富集培养聚磷微生物。对比发现,催化铁与生物耦合组中厌氧末段ORP降低了约60 mV,pH值小幅度的上升(≤0.3),整个培养过程中铁离子的浓度开始快速增加,之后趋于稳定(约40 mg Fe/g MLSS)。对好氧末段污泥SVI值比较发现,耦合工艺污泥沉降性能得到改善。除磷曲线比较发现,耦合组中厌氧末段磷的释放量下降,而好氧阶段磷的吸收速率增加;胞内聚合物提取表明,耦合组厌氧末段聚磷菌细胞内PHA含量有提高,好氧末段糖原含量有下降。磷形态提取分析表明,耦合组好氧末段污泥中无机态PO3-4-P含量更高。低浓度铁离子可以起到与生物耦合同步除磷的目的,本工艺长期运行未发现耦合体系中催化铁对除磷的抑制作用。 展开更多
关键词 催化铁内电解 除磷 耦合 氧化还原电位 聚羟基烷酸
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部