The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects of alkyl chain length a...The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects of alkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.展开更多
In the paper,the structures of the crystalline 3,4-polyisoprene(3,4-PI) which was first synthesized in our institute,were investigated by using Wide Angle X-ray Diffraction(WAXD);Small Angle X-ray Scattering(SAXS)and ...In the paper,the structures of the crystalline 3,4-polyisoprene(3,4-PI) which was first synthesized in our institute,were investigated by using Wide Angle X-ray Diffraction(WAXD);Small Angle X-ray Scattering(SAXS)and Laue photography in various polymerization conditions and elongate ratios.It was found that reducing reaction velocity was favourable for crystalline capacity.The polymeric structures were dependent mainly on nitrogen electron donor.The degree of crystallinity and long period were increased with elongate ratio,but crystalline size was decreased.The polymers used in the work belong to inhomogeneous particulate system.The particulate radii were between 35-164A.展开更多
This paper reports that the pattern formation in homogeneous solutions of polyisoprene in toluene saturated with C60 induced by a continuous-wave visible laser is observed experimentally. The transmitted beam patterns...This paper reports that the pattern formation in homogeneous solutions of polyisoprene in toluene saturated with C60 induced by a continuous-wave visible laser is observed experimentally. The transmitted beam patterns change with the increase of the laser irradiation time. In the initial phase, the patterns with concentric ring-shaped structure are formed. In the end, the patterns become speckle-shaped. The incubation time of the transmitted beam widening is inversely proportional to the laser power density and solution concentration. The pattern formation results from the optical-field-induced refractive index changes in the solutions, but the mechanism of optical-field-induced refractive index changes in the polymer solutions needs to be further studied.展开更多
The epoxidation of polydienes yields materials with improved properties, which can be tuned by the control of the epoxidation degree. In this work, we retake a known process, the epoxidation of polyisoprene, by a diff...The epoxidation of polydienes yields materials with improved properties, which can be tuned by the control of the epoxidation degree. In this work, we retake a known process, the epoxidation of polyisoprene, by a different approach, in which the quantification of parameters influencing the epoxidation, such as temperature, oxidant and catalyst concentration, and reaction time degree is evaluated. We measured the influence of each parameter, allowing anyone who aims a polymer with a certain degree of epoxidation to choose which conditions are best suitable for reaching his goal.展开更多
The viscoelastic properties of synthetic polyisoprenes (PI) reinforced by white carbon black (WCB) have been investigated and compared with WCB reinforced natural rubber (NR), including cure characteristics, phy...The viscoelastic properties of synthetic polyisoprenes (PI) reinforced by white carbon black (WCB) have been investigated and compared with WCB reinforced natural rubber (NR), including cure characteristics, physio-mechanical and dynamic mechanical properties. Compared with NR, PI loaded with the same amount of WCB (PI/WCB) exhibited shorter scorch time and optimal cure time, indicating that WCB fillers are comparatively easier to conjugate with PI. The tensile strength and elongation at break decreased with WCB filling in both PI and NR vulcanizates. The hardness of the rubber vulcanizates increased with the WCB filling in the rubber matrix. PI/WCB blends exhibited smaller hardness data, lower tensile strength, as well as lower elongation at break and tensile stress. Increasing the amount of WCB in rubber matrix induced the Payne effect. However, the Payne effect is much more obvious for the PI/WCB system, and PI/WCB also displayed higher storage modulus whereas lower loss modulus and loss tangent than NR/WCB, which could all be attributed to the poor dispersibilities of WCB in the PI matrix.展开更多
For decades,the preparation of polyisoprene rubber that can match the comprehensive properties of natural rubber(NR)has been pursued.While sacrificial bonds have been used to promote the strength and toughness of rubb...For decades,the preparation of polyisoprene rubber that can match the comprehensive properties of natural rubber(NR)has been pursued.While sacrificial bonds have been used to promote the strength and toughness of rubbers,little is known about their effects on fatigue resistance,which is important in dynamic environments.Herein,terminal block and randomly functionalized polyisoprene rubbers tethered with di-alanine,tri-alanine and tetra-alanine were prepared.The results showed that the flow activation energy,aggregates ordering and energy dissipation of the hydrogen-bonded aggregates increase with the elongation of oligopeptide length(XA,X=2,3,4),therefore resulting in enhanced mechanical strength and toughness of corresponding samples.Comparably,the tear strengths are barely affected by oligopeptide lengths in block samples,but promoted from dipeptide to tetrapeptide in random samples,probably due to the well dispersed oligopeptide aggregates.Most importantly,it is found that the tight binding aggregates of oligopeptides are critical for the excellent fatigue resistance,which is absent in polyisoprene and natural rubber.The loose aggregates dissociate and recombine repeatedly under cyclic loading and the tight aggregates keep the network integrated and robust.Interestingly,the largest hysteresis of PIP-4A-V with the longest oligopeptide length give the lowest heat generation,which is contrary to the traditional sacrificial bonds.Overall,the oligopeptide aggregates have repeatable energy dissipation properties and cycle life comparable to or even surpassing those of the linked proteins in NR,resulting in similar tensile strength,fracture toughness,and better fatigue resistance relative to NR.This deep insight on the role of oligopeptide aggregates is very useful for the engineering rubbers served in dynamic environments.展开更多
The branching structures in natural rubber(NR) were believed to be critical for its superior mechanical properties. However, it is challenging to unravel the branching structure-function relationship of NR due to the ...The branching structures in natural rubber(NR) were believed to be critical for its superior mechanical properties. However, it is challenging to unravel the branching structure-function relationship of NR due to the complexity of the system. Herein, polyisoprene-(polyisoprene-g-polylactide)(PI-PLA) as model compound containing branching structure was designed and synthesized, which can improve the modulus, strength and viscoelasticity activation energy compared to those of the pristine polyisoprene(PI). The reason is that the branching structure contributes to the entanglement between polyisoprene chains. In order to probe the effect of branching structure on noncovalently crosslinked system, the polyisoprene block of PI-PLA was epoxidized and mixed with Fe3+ ions to introduce coordination bonds. Compared with the linear counterpart, the branching structure obviously enhanced activation energy of coordinated polyisoprenes, remarkably improving the mechanical properies of elastomer.展开更多
Through neodymium-mediated coordinative chain transfer copolymerizaiton(CCTcoP),polyisoprenes bearing dual hydroxylated mini-blocky chain-ends were prepared via a three-step strategy.Kinetic studies revealed that,the ...Through neodymium-mediated coordinative chain transfer copolymerizaiton(CCTcoP),polyisoprenes bearing dual hydroxylated mini-blocky chain-ends were prepared via a three-step strategy.Kinetic studies revealed that,the polymerization demonstrated typical features of CCTcoP across the whole polymerization process,i.e.,quasi-living polymerization characteristic,tunable molecular weights,narrow molecular weight distributions,and atom economies.Comparing to previously reported CCTP homopolymerization systems,the presence of oxygen-containing IpOAl polar comonomer slowed down chain transfer rates obviously,rendering slightly higher molecular weights of the resultant PIps and smaller Np(number of polymer chains per Nd atom)values.Moreover,to mimic the structure of natural rubber,the hydroxyl end groups can be facilely modified into phosphonate,amide,and UPy,whose structures were further confirmed by NMR spectra.Incorporation these functionalities could greatly improve the hydrophilic properties of the polymers,as revealed from the significantly reduced static water contact angles.展开更多
The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained poly...The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained polyisoprene and polystyrene homopolymers served as macroinitiators for block copolymerization of isoprene and styrene to synthesize poly- (styrene-b-isoprene) and poly(isoprene-b-styrene) diblock copolymers. Diblock copolymers with well-defined structures as well as controlled and narrow molecular weight distribution were obtained from the lower-mass polystyrene and polyisoprene homopolymers. These copolymers were found to be active as macroinitiators in the synthesis of the poly(styrene-b-isoprene-b-styrene) and poly(isoprene-b-styrene-b-isoprene) triblock copolymers. 1H-NMR spectroscopy and gel permeation chromatography (GPC) were used for the investigation of polymer structure, molecular weight and polydispersity (PD).展开更多
The scientific and technical history of polymerization can be divided into three periods, which will be illustratedfor emulsion polymerization. The first period was when emulsion polymers were originally produced, and...The scientific and technical history of polymerization can be divided into three periods, which will be illustratedfor emulsion polymerization. The first period was when emulsion polymers were originally produced, and was developed asan attempt to copy natural rubber latex. Indeed, the natural process is quite different from the synthetic process of emulsionpolymerization, which in fact does not even need an emulsion to be present: the term is a misnomer! The results werefunctional but limited. In the second period, the first theories appeared, and a huge range of products was madefor surface coatings, adhesives, commodity polymers such as SBR, neoprene, etc. The work of the outstanding pioneers wasbased on limited types of experimental data, and some suppositions are now seen to be incorrect. Nevertheless, manyexcellent products were made and have evolved to many materials currently in everyday use. The third period of emulsionpolymerization is now dawning. The scientific efforts of many teams over previous decades, aided by the advent of newphysical techniques for investigation, have resulted in better understanding of the fundamentals of emulsion polymerizations.Some examples from the author's group involve creating novel materials using controlled seeded emulsion polymerizationfrom natural rubber latex and other polyenes. Latex topology and controlled free-radical chemistry can be combined toproduce a) a comb polymer with hydrophobic backbone and hydrophilic 'teeth', or b) with sufficient in situ compatibilizerbetween two otherwise incompatible polymers to yield a spatially uniform material down to the nanostructure level, and c) toproduce controlled nanostructures.展开更多
The tetrameric neodymium-silsesquioxane cage complex,{[(i-C_4H_9)_7(Si_7O_(12))Nd])4NaCl},was prepared and used as precursor for the polymerization of isoprene.When activated by AlEt_3 in the presence of TMSCl,this PO...The tetrameric neodymium-silsesquioxane cage complex,{[(i-C_4H_9)_7(Si_7O_(12))Nd])4NaCl},was prepared and used as precursor for the polymerization of isoprene.When activated by AlEt_3 in the presence of TMSCl,this POSS-Nd complex (POSS=polyhedral oligomeric silsesquioxane) shows a moderate activity for the polymerization,and the effects of different ratios of Al/Nd,Cl/Nd and time on the polymerization were investigated.Moreover,The POSS-Nd complex may serve as models for the silica-supported rare earth cat...展开更多
Volatile Fatty Acid number(VFA no.)is one of the parameters indicating the state of quality of Para rubber latex at that particular time.Most factories analyze this parameter using standard analytical method as in ISO...Volatile Fatty Acid number(VFA no.)is one of the parameters indicating the state of quality of Para rubber latex at that particular time.Most factories analyze this parameter using standard analytical method as in ISO 506:1992(E).Nevertheless,this procedure is complicated,chemical and time consuming,as well as skilled analyst required.Therefore,near infrared(NIR)spectroscopy which is rapid,accurate and nonchemicals method was applied to determine the VFA no.infield latex and concentrated latex based on quantification and discriminant model.The best calibration equation was obtained from standard normal variate(SNV)spectra in the region of 6109.7–5770.3,4613.1–4242.9 cm^(-1) with R?0:832,SECV?0:036 and no bias.From the performance check,statistically it was found that SECV and bias were low enough for practical acceptance and the predicted VFA no.was not di®erent significantly from actual VFA no.at 95% confidence intervals.In addition,discriminant model was developed to separate good quality latex from the deteriorated latex using VFA no.at 0.06 as standard as in ISO 2004:2010(E).The discriminant model can be used to screen the latex with overall accuracy of 91.86%in validation set.展开更多
The aryldiimine NCN-pincer stabilized neodymium dichloride combined with aluminum alkyls established a new type of homogeneous binary neutral Ziegler-Natta catalyst system.This system exhibited high activity and high ...The aryldiimine NCN-pincer stabilized neodymium dichloride combined with aluminum alkyls established a new type of homogeneous binary neutral Ziegler-Natta catalyst system.This system exhibited high activity and high cis-1,4 selectivity for the polymerization of isoprene (Tp=20 °C,98.2%;Tp=-20 °C,】 99%).Such catalytic performances remained under a broad range of polymerization temperatures and monomer-to-neodymium ratios (from 500 to 8000),reaching high number-average molecular weight (Mn=1582 kg/mol) and relatively narrow molecular weight distribution (PDI=1.68),which was,however,influenced by the amount and bulkiness of aluminum alkyls.Dynamic investigation of the polymerization was performed,which showed the number-average molecular weight of the resultant polyisoprene had an almost linear correlation with the conversion,suggesting,in some degree,the polymerization with this catalytic system was controllable.展开更多
China is rich in rare earth resources. Rare earth elements, also named lanthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coor...China is rich in rare earth resources. Rare earth elements, also named lanthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coordination compounds. In the early 1960s, researchers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAC) found the catalytic activities of lanthanide compounds in stereospecific polymerization of conjugated dienes, and published the first paper on this topic in 1964. On the basis of this finding, CIAC launched extensive research activities on lanthanide compounds as diene polymerization catalysts, from a series of fundamental research to the efforts of industrializing the rare earth catalyzed cis-1,4-polybutatine rubber and cis-1,4-polyisoprene rubber. This review aims to summarize the progress in this field in the past half century.展开更多
文摘The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects of alkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.
文摘In the paper,the structures of the crystalline 3,4-polyisoprene(3,4-PI) which was first synthesized in our institute,were investigated by using Wide Angle X-ray Diffraction(WAXD);Small Angle X-ray Scattering(SAXS)and Laue photography in various polymerization conditions and elongate ratios.It was found that reducing reaction velocity was favourable for crystalline capacity.The polymeric structures were dependent mainly on nitrogen electron donor.The degree of crystallinity and long period were increased with elongate ratio,but crystalline size was decreased.The polymers used in the work belong to inhomogeneous particulate system.The particulate radii were between 35-164A.
基金Project supported by the Multidiscipline Scientific Research Foundation of Harbin Institute of Technology (Grand No HIT. MD. 2003. 08) and the Program of Excellence Team in Harbin Institute of Technology
文摘This paper reports that the pattern formation in homogeneous solutions of polyisoprene in toluene saturated with C60 induced by a continuous-wave visible laser is observed experimentally. The transmitted beam patterns change with the increase of the laser irradiation time. In the initial phase, the patterns with concentric ring-shaped structure are formed. In the end, the patterns become speckle-shaped. The incubation time of the transmitted beam widening is inversely proportional to the laser power density and solution concentration. The pattern formation results from the optical-field-induced refractive index changes in the solutions, but the mechanism of optical-field-induced refractive index changes in the polymer solutions needs to be further studied.
文摘The epoxidation of polydienes yields materials with improved properties, which can be tuned by the control of the epoxidation degree. In this work, we retake a known process, the epoxidation of polyisoprene, by a different approach, in which the quantification of parameters influencing the epoxidation, such as temperature, oxidant and catalyst concentration, and reaction time degree is evaluated. We measured the influence of each parameter, allowing anyone who aims a polymer with a certain degree of epoxidation to choose which conditions are best suitable for reaching his goal.
基金financially supported by the National Basic Research Program of China(No.2010CB934700)
文摘The viscoelastic properties of synthetic polyisoprenes (PI) reinforced by white carbon black (WCB) have been investigated and compared with WCB reinforced natural rubber (NR), including cure characteristics, physio-mechanical and dynamic mechanical properties. Compared with NR, PI loaded with the same amount of WCB (PI/WCB) exhibited shorter scorch time and optimal cure time, indicating that WCB fillers are comparatively easier to conjugate with PI. The tensile strength and elongation at break decreased with WCB filling in both PI and NR vulcanizates. The hardness of the rubber vulcanizates increased with the WCB filling in the rubber matrix. PI/WCB blends exhibited smaller hardness data, lower tensile strength, as well as lower elongation at break and tensile stress. Increasing the amount of WCB in rubber matrix induced the Payne effect. However, the Payne effect is much more obvious for the PI/WCB system, and PI/WCB also displayed higher storage modulus whereas lower loss modulus and loss tangent than NR/WCB, which could all be attributed to the poor dispersibilities of WCB in the PI matrix.
基金financially supported by the National Natural Science Foundation of China(No.51973126)the State Key Laboratory of Polymer Materials Engineering(No.sklpme20222-11)。
文摘For decades,the preparation of polyisoprene rubber that can match the comprehensive properties of natural rubber(NR)has been pursued.While sacrificial bonds have been used to promote the strength and toughness of rubbers,little is known about their effects on fatigue resistance,which is important in dynamic environments.Herein,terminal block and randomly functionalized polyisoprene rubbers tethered with di-alanine,tri-alanine and tetra-alanine were prepared.The results showed that the flow activation energy,aggregates ordering and energy dissipation of the hydrogen-bonded aggregates increase with the elongation of oligopeptide length(XA,X=2,3,4),therefore resulting in enhanced mechanical strength and toughness of corresponding samples.Comparably,the tear strengths are barely affected by oligopeptide lengths in block samples,but promoted from dipeptide to tetrapeptide in random samples,probably due to the well dispersed oligopeptide aggregates.Most importantly,it is found that the tight binding aggregates of oligopeptides are critical for the excellent fatigue resistance,which is absent in polyisoprene and natural rubber.The loose aggregates dissociate and recombine repeatedly under cyclic loading and the tight aggregates keep the network integrated and robust.Interestingly,the largest hysteresis of PIP-4A-V with the longest oligopeptide length give the lowest heat generation,which is contrary to the traditional sacrificial bonds.Overall,the oligopeptide aggregates have repeatable energy dissipation properties and cycle life comparable to or even surpassing those of the linked proteins in NR,resulting in similar tensile strength,fracture toughness,and better fatigue resistance relative to NR.This deep insight on the role of oligopeptide aggregates is very useful for the engineering rubbers served in dynamic environments.
基金financially supported by the National Natural Science Foundation of China(Nos.51973126 and 51333003)。
文摘The branching structures in natural rubber(NR) were believed to be critical for its superior mechanical properties. However, it is challenging to unravel the branching structure-function relationship of NR due to the complexity of the system. Herein, polyisoprene-(polyisoprene-g-polylactide)(PI-PLA) as model compound containing branching structure was designed and synthesized, which can improve the modulus, strength and viscoelasticity activation energy compared to those of the pristine polyisoprene(PI). The reason is that the branching structure contributes to the entanglement between polyisoprene chains. In order to probe the effect of branching structure on noncovalently crosslinked system, the polyisoprene block of PI-PLA was epoxidized and mixed with Fe3+ ions to introduce coordination bonds. Compared with the linear counterpart, the branching structure obviously enhanced activation energy of coordinated polyisoprenes, remarkably improving the mechanical properies of elastomer.
基金financially supported by the National Natural Science Foundation of China(No.U1862206)Jilin Province Department of Education(No.JJKH20200665KJ)+3 种基金Dr.W.Zhao thanks for the financial support from China Postdoctoral Science Foundation(No.2021M701818)Shandong Provincial Natural Science Foundation,China(No.ZR2022QE237)Qingdao Postdoctoral Applied Research Project,PetroChina Company Limited(No.2020B-2711)H.Liu sincerely acknowledges the financial support from the Taishan Scholars Program。
文摘Through neodymium-mediated coordinative chain transfer copolymerizaiton(CCTcoP),polyisoprenes bearing dual hydroxylated mini-blocky chain-ends were prepared via a three-step strategy.Kinetic studies revealed that,the polymerization demonstrated typical features of CCTcoP across the whole polymerization process,i.e.,quasi-living polymerization characteristic,tunable molecular weights,narrow molecular weight distributions,and atom economies.Comparing to previously reported CCTP homopolymerization systems,the presence of oxygen-containing IpOAl polar comonomer slowed down chain transfer rates obviously,rendering slightly higher molecular weights of the resultant PIps and smaller Np(number of polymer chains per Nd atom)values.Moreover,to mimic the structure of natural rubber,the hydroxyl end groups can be facilely modified into phosphonate,amide,and UPy,whose structures were further confirmed by NMR spectra.Incorporation these functionalities could greatly improve the hydrophilic properties of the polymers,as revealed from the significantly reduced static water contact angles.
文摘The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained polyisoprene and polystyrene homopolymers served as macroinitiators for block copolymerization of isoprene and styrene to synthesize poly- (styrene-b-isoprene) and poly(isoprene-b-styrene) diblock copolymers. Diblock copolymers with well-defined structures as well as controlled and narrow molecular weight distribution were obtained from the lower-mass polystyrene and polyisoprene homopolymers. These copolymers were found to be active as macroinitiators in the synthesis of the poly(styrene-b-isoprene-b-styrene) and poly(isoprene-b-styrene-b-isoprene) triblock copolymers. 1H-NMR spectroscopy and gel permeation chromatography (GPC) were used for the investigation of polymer structure, molecular weight and polydispersity (PD).
文摘The scientific and technical history of polymerization can be divided into three periods, which will be illustratedfor emulsion polymerization. The first period was when emulsion polymers were originally produced, and was developed asan attempt to copy natural rubber latex. Indeed, the natural process is quite different from the synthetic process of emulsionpolymerization, which in fact does not even need an emulsion to be present: the term is a misnomer! The results werefunctional but limited. In the second period, the first theories appeared, and a huge range of products was madefor surface coatings, adhesives, commodity polymers such as SBR, neoprene, etc. The work of the outstanding pioneers wasbased on limited types of experimental data, and some suppositions are now seen to be incorrect. Nevertheless, manyexcellent products were made and have evolved to many materials currently in everyday use. The third period of emulsionpolymerization is now dawning. The scientific efforts of many teams over previous decades, aided by the advent of newphysical techniques for investigation, have resulted in better understanding of the fundamentals of emulsion polymerizations.Some examples from the author's group involve creating novel materials using controlled seeded emulsion polymerizationfrom natural rubber latex and other polyenes. Latex topology and controlled free-radical chemistry can be combined toproduce a) a comb polymer with hydrophobic backbone and hydrophilic 'teeth', or b) with sufficient in situ compatibilizerbetween two otherwise incompatible polymers to yield a spatially uniform material down to the nanostructure level, and c) toproduce controlled nanostructures.
基金supported by the National Natural Science Foundation(No.20674071)the Special Funds for MajorState Basic Research Projects(No.2005CB623802).
文摘The tetrameric neodymium-silsesquioxane cage complex,{[(i-C_4H_9)_7(Si_7O_(12))Nd])4NaCl},was prepared and used as precursor for the polymerization of isoprene.When activated by AlEt_3 in the presence of TMSCl,this POSS-Nd complex (POSS=polyhedral oligomeric silsesquioxane) shows a moderate activity for the polymerization,and the effects of different ratios of Al/Nd,Cl/Nd and time on the polymerization were investigated.Moreover,The POSS-Nd complex may serve as models for the silica-supported rare earth cat...
文摘Volatile Fatty Acid number(VFA no.)is one of the parameters indicating the state of quality of Para rubber latex at that particular time.Most factories analyze this parameter using standard analytical method as in ISO 506:1992(E).Nevertheless,this procedure is complicated,chemical and time consuming,as well as skilled analyst required.Therefore,near infrared(NIR)spectroscopy which is rapid,accurate and nonchemicals method was applied to determine the VFA no.infield latex and concentrated latex based on quantification and discriminant model.The best calibration equation was obtained from standard normal variate(SNV)spectra in the region of 6109.7–5770.3,4613.1–4242.9 cm^(-1) with R?0:832,SECV?0:036 and no bias.From the performance check,statistically it was found that SECV and bias were low enough for practical acceptance and the predicted VFA no.was not di®erent significantly from actual VFA no.at 95% confidence intervals.In addition,discriminant model was developed to separate good quality latex from the deteriorated latex using VFA no.at 0.06 as standard as in ISO 2004:2010(E).The discriminant model can be used to screen the latex with overall accuracy of 91.86%in validation set.
基金supported by the National Natural Science Foundation of China (20674081,20934006) the Ministry of Science and Technology of China (2005CB623802,2009AA03Z501).
文摘The aryldiimine NCN-pincer stabilized neodymium dichloride combined with aluminum alkyls established a new type of homogeneous binary neutral Ziegler-Natta catalyst system.This system exhibited high activity and high cis-1,4 selectivity for the polymerization of isoprene (Tp=20 °C,98.2%;Tp=-20 °C,】 99%).Such catalytic performances remained under a broad range of polymerization temperatures and monomer-to-neodymium ratios (from 500 to 8000),reaching high number-average molecular weight (Mn=1582 kg/mol) and relatively narrow molecular weight distribution (PDI=1.68),which was,however,influenced by the amount and bulkiness of aluminum alkyls.Dynamic investigation of the polymerization was performed,which showed the number-average molecular weight of the resultant polyisoprene had an almost linear correlation with the conversion,suggesting,in some degree,the polymerization with this catalytic system was controllable.
文摘China is rich in rare earth resources. Rare earth elements, also named lanthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coordination compounds. In the early 1960s, researchers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAC) found the catalytic activities of lanthanide compounds in stereospecific polymerization of conjugated dienes, and published the first paper on this topic in 1964. On the basis of this finding, CIAC launched extensive research activities on lanthanide compounds as diene polymerization catalysts, from a series of fundamental research to the efforts of industrializing the rare earth catalyzed cis-1,4-polybutatine rubber and cis-1,4-polyisoprene rubber. This review aims to summarize the progress in this field in the past half century.