In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har...In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.展开更多
Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characteriz...Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.展开更多
Microwave dielectric measurements over the broad bandwith of 10 MHz to 20 GHz were conducted on composites comprising bundles of single-walled carbon nanotubes (SWNT) embedded in an epoxy matrix, in comparison to th...Microwave dielectric measurements over the broad bandwith of 10 MHz to 20 GHz were conducted on composites comprising bundles of single-walled carbon nanotubes (SWNT) embedded in an epoxy matrix, in comparison to the nano-graphite and MWNT. It is found that both relative real and imaginary permittivity of the nanocomposites are strong functions of the SWNT concentration, showing large, wide dielectric and electrical response. Distinct resonance around 1.5 GHz is observed at high SWNT concentrations, accompa- nied by the downshift of the resonance frequency with increasing concentration. Largely, the SWNT-epoxy composites share the behavior of the MWNT owing to structural similarity, much more effective than the nano-graphite. The remarkable, broadband dielectric and electrical properties of the nanotubes acquired in the work originate from their unique seamless graphene architectures, modeled by two major contributions, dielectric relaxation/resonance and electronic conduction, which is substantiated by the agreement between theoretical analysis and experimental results. The carbon nanotube composites are prospective for microwave applications and offer experimental evidence for fundamental studies in low-dimensional systems.展开更多
Carbon nanotube(CNT)-reinforced composites have ultra-high elastic moduli,low densities,and fibrous structures.This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micr...Carbon nanotube(CNT)-reinforced composites have ultra-high elastic moduli,low densities,and fibrous structures.This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micro-to macro-scales.The nanocomposites were modeled using representative volume elements(RVEs),and finite element code was written to simulate the modeling and loading procedure and obtain equivalent mechanical properties of the RVEs with various volume fractions of CNTs,which can be used directly in the follow-up simulation studies on the macroscopic model of CNT-reinforced nanocomposites.When using the programming to simulate the deformation and fracture process of the CNT-reinforced epoxy composites,the mechanical parameters and stress-strain curves of the composites on themacro-scale were obtained by endowing the elements of the lattice models withRVE parameters.Tensile experiments of the CNT-reinforced composites were also carried out.The validity of the finite element simulation method was verified by comparing the results of the simulations and experiments.Finite element models of functionally graded CNT-reinforced composites(FG-CNTRC)with different distributions were established,and the tensile and three-point-bending conditions for various graded material models were simulated by the methods of lattice model and birth-death element to obtain the tensile and bending parameters.In addition,the influence of the distribution and volume ratio of the CNTs on the performance of the graded composite material structures was also analyzed.展开更多
Solvent-free nanofluids hold promise for many technologically significant applications.The liquid-like behavior,a typical rheological property of solvent-free nanofluids,has aroused considerable interests.However,ther...Solvent-free nanofluids hold promise for many technologically significant applications.The liquid-like behavior,a typical rheological property of solvent-free nanofluids,has aroused considerable interests.However,there has been still lack of efficient methods to predict and control the liquid-like behavior of solvent-free nanofluids.In this paper,we propose a semi-discrete dynamic system with stochastic excitation describing the temperature change effects on the rheological property of multiwall carbon nanotubes(MWCNTs)modified by grafting sulfonic acid terminated organosilanes as corona and tertiary amine as canopy,which is a typical covalent-type solvent-free nanofluid system.The vibration of the grafting branches is simulated by employing a structure-preserving approach,and the shear force of grafting branches at the fixed end is computed subsequently.By taking the shear forces as an excitation acting on the MWCNTs,the axial motion of the MWCNTs is solved with the 7-point Gauss-Kronrod quadrature rule.The critical temperature associated with the appearance of the liquid-like behavior as well as the upper bound of the moving speed of the modified MWCNTs is determined,which can be used to predict and control the liquid-like behavior of the modified MWCNTs in engineering applications.展开更多
Multi-walled carbon nanotube (MWCNT)-Fe composites were prepared via the metal organic chemical vapor deposi- tion by depositing iron pentacarbonyl on the surface of MWCNTs. The structural and morphological analyses...Multi-walled carbon nanotube (MWCNT)-Fe composites were prepared via the metal organic chemical vapor deposi- tion by depositing iron pentacarbonyl on the surface of MWCNTs. The structural and morphological analyses demonstrated that Fe nanoparticles were deposited on the surface of the MWCNTs. The electromagnetic properties of the MWCNTs were significantly changed, and the absorbing capacity evidently improved after the Fe deposition on the MWCNT surface. A minimum reflection loss of -29.4 dB was observed at 8.39 GHz, and the less than -10 dB bandwidth was about 10.6 GHz, which covered the whole X band (8.2-12.4 GHz) and the whole Ku band (12.4-18 GHz), indicating that the MWCNT-Fe composites could be used as an effective microwave absorption material.展开更多
The super-aligned carbon nanotube(SACNT)films reinforced copper(Cu)laminar composites with different orientationsof CNT ply were fabricated by electrodeposition.The results show that the tensile strength and yield str...The super-aligned carbon nanotube(SACNT)films reinforced copper(Cu)laminar composites with different orientationsof CNT ply were fabricated by electrodeposition.The results show that the tensile strength and yield strength of cross-ply compositewith5.0%(volume fraction)of SACNT reach maximum of336.3MPa and246.0MPa respectively,increased by74.0%and124.5%compared with pure Cu prepared with the same method.Moreover,the electrical conductivities of all the prepared composites areover75%IACS.The result of TEM analysis shows that the size of Cu grain and the thickness of twin lamellae can be reduced byadding SACNT,and the refining effect in cross-ply composites is more significant than that in unidirectional ply composites.Theenhanced strength of the Cu/SACNT composites comes from not only the reinforcing effect of SACNT films but also the additionalstrengthening of the Cu grain refinement caused by CNT orientation.展开更多
The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were ...The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver–palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion(CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%?40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver–palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.展开更多
Carbonaceous nanomaterials such as carbon nanotubes (CNTs), magnetic metal nanomaterials and semicon- ductor nanomaterials are superior candidates for microwave absorbers. Taking full advantage of the features of CN...Carbonaceous nanomaterials such as carbon nanotubes (CNTs), magnetic metal nanomaterials and semicon- ductor nanomaterials are superior candidates for microwave absorbers. Taking full advantage of the features of CNTs, nanophase cobalt and nanophase zinc oxide, whose main microwave absorption mechanisms are based on resistance loss, magnetic loss and dielectric loss, we fabricate CNT/Co and CNT/ZnO heterostructure nanocom- posites, respectively. By using the CNTs, CNT/Co nanocomposites and CNT/ZnO nanocomposites as nanofillers, composites with polyester as matrix are prepared by in situ polymerization, and their microwave absorption per- formance is studied. It is indicated that the synergetic effects of the physic properties of different components in nano-heterostructures result in greatly enhanced microwave absorption performance in a wide frequency range. The absorption peak is increased, the absorption bandwidth is broadened, and the maximum peak shifts to a lower frequency.展开更多
Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper p...Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper powders to fabricate Mo-CNT/Cu composites by means of mechanical milling followed by spark plasma sintering. The Mo-CNTs were uniform dispersion in the Cu matrix when their contents were 2.5 vo1.%-7.5 vol.%, while some Mo-CNT clusters were clearly observed at additions of 10.0 vo1.%-15.0 vol.% Mo-CNTs in the mixture. The mechanical, electrical, and thermal properties of the Mo-CNT/Cu composites were characterized, and the results showed that the tensile strength and hardness were 2.0 and 2.2 times higher than those of CNT-free specimens, respectively. Moreover, the Mo-CNT/Cu composites exhibited an enhanced thermal conductivity but inferior electrical conductivity compared with sintered pure Cu. The uncoated CNT/Cu composites were fabricated by the similar processes, and the measured tensile strength, hardness, thermal conductivity, and electrical conductivity of the CNT/Cu composites were lower than those of the Mo-CNT/Cu composites.展开更多
To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)...To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)/Al composites were prepared by the combination processes of powder mixing and spark plasma sintering.The influences of powder mixing and Mo-CNT content on the mechanical properties and electrical conductivity of the composites were investigated.The results show that magnetic stirring is better than mechanical milling for mixing the Mo-CNTs and Al powders.The electrical conductivity of the composites decreases with increasing Mo-CNT content.When the Mo-CNT content is 0.5wt%,the tensile strength and hardness of Mo-CNT/Al reach their maximum values.The tensile strength of 0.5wt% Mo-CNT/Al increases by 29.9%,while the electrical conductivity only decreases by 7.1%,relative to sintered pure Al.The phase analysis of Mo-CNT/Al composites reveals that there is no formation of Al carbide in the composites.展开更多
The method of preparing the multi-walled carbon nanotubes (MWNTs)-polyacrylonitriIe (PAN) composite fibers is described and the effects of draw ratio on the mechanical properties of CNT/PAN fibers have also been discu...The method of preparing the multi-walled carbon nanotubes (MWNTs)-polyacrylonitriIe (PAN) composite fibers is described and the effects of draw ratio on the mechanical properties of CNT/PAN fibers have also been discussed. The results show that the degrees of MWNTs dispersion in the polymer matrix have much effect on the mechanical properties.展开更多
AZ91D alloy composites with1.0%CNTs have been fabricated by a method combined ball milling with stirring casting.The composite was investigated using optical microscopy(OM),X-ray diffraction(XRD),Fourier transform inf...AZ91D alloy composites with1.0%CNTs have been fabricated by a method combined ball milling with stirring casting.The composite was investigated using optical microscopy(OM),X-ray diffraction(XRD),Fourier transform infrared spectroscope(FT-IR),scanning electron microscope(SEM),transmission electron microscope(TEM)and room temperature(RT)tensile test.Theresults show that CNTs were homogeneously distributed in the matrix and maintained integrated structure.The yield strength andductility of AZ91D/CNTs composite were improved by47.2%and112.2%,respectively,when compared with the AZ91alloy.Theuniform distribution of CNTs and the strong interfacial bonds between CNT and the matrix are dominated to the simultaneousimprovement of yield strength and ductility of the composite.In addition,the grain refinement as well as the finerβphase(Mg17Al12)with homogenous distribution in the matrix can also slightly assist to the enhancement of the mechanical properties of thecomposite.展开更多
A homogeneous and compact super-aligned carbon nanotube(SACNT)-reinforced nickel-matrix composite was successfully prepared by electrodeposition. The mechanical properties of the laminar SACNT/Ni composites were subst...A homogeneous and compact super-aligned carbon nanotube(SACNT)-reinforced nickel-matrix composite was successfully prepared by electrodeposition. The mechanical properties of the laminar SACNT/Ni composites were substantially improved compared with those of pure nickel. With increasing content of SACNTs, the tensile strength of the composite increased and the elongation decreased because of the high-strength SACNTs bearing part of an applied load and the fine-grained strengthening mechanism. The nanohardness of the SACNT/Ni composites was improved from 3.92 GPa(pure nickel) to 4.62 GPa(Ni-4 vol%SACNTs). The uniform distribution of SACNTs in the composites and strong interfacial bonding between the SACNTs and the nickel matrix resulted in an improvement of the mechanical properties of the SACNT/Ni composites. The introduced SACNTs refined the nickel grains, increased the amount of crystal twins, and changed the preferred orientation of grain growth.展开更多
Cu matrix composites reinforced by carbon nanotubes(CNTs) were prepared. The effect of carbon nanotubes on mechanical and tribological properties of the Cu matrix composites were investigated. The chemical method for ...Cu matrix composites reinforced by carbon nanotubes(CNTs) were prepared. The effect of carbon nanotubes on mechanical and tribological properties of the Cu matrix composites were investigated. The chemical method for coating CNTs was reported. The morphology of the fracture surfaces and worn surface were examined by SEM. The results show that Cu/coated-CNTs composites have higher hardness, much better wear resistance and (anti-)(friction) properties than those of the reference Cu alloy (Cu-10Sn) and Cu/uncoated-CNTs composite sintered under the same conditions. The optimal mechanical properties of the composites occurred at 2.25%(mass fraction) of CNTs. The excellent wear resistance and anti-friction properties are attributed to the fiber strengthening effect of CNTs and the effect of the spherical wear debris containing carbon nanotubes on the tribo-surface.展开更多
Multi-wall carbon nanotubes (MWNTs) have high mechanical properties and are considered a kind of realistic reinforcement for polymers, ceramics and metals. The hot press sintering and squeeze casting were adopted to s...Multi-wall carbon nanotubes (MWNTs) have high mechanical properties and are considered a kind of realistic reinforcement for polymers, ceramics and metals. The hot press sintering and squeeze casting were adopted to synthesize MWNTs reinforced aluminum composites. In hot press sintered MWNTs/Al composites, MWNTs agglomerates distribute along aluminum powders and have low bonding strength with aluminum. But MWNTs agglomerates distribute evenly in the squeeze cast MWNTs/Al composites. Some dispersed nanotubes bond well with aluminum matrix and few dislocations can be found in the nanotube areas, which implies little thermal residual stress in squeeze cast MWNTs/Al composites. This indicates that the strengthen mechanisms in nanometer sized MWNTs/Al composites may be different from that in micrometer sized whisker composites.展开更多
Multiwalled carbon nanotubes and BaTiO3 composite films have been prepared by pulsed-laser deposition technique at room temperature and high temperature of 600℃, separately. The structures of the composite films are ...Multiwalled carbon nanotubes and BaTiO3 composite films have been prepared by pulsed-laser deposition technique at room temperature and high temperature of 600℃, separately. The structures of the composite films are investigated by using scanning electron microscopy and x-ray diffraction. The optical behaviours of the samples produced at different temperatures are compared with Raman spectroscopy, and UV-visible absorption. And the observation by Z-scan technique reveals that the composite films have a larger optical nonlinearity, and the samples prepared at high temperatures have better transmittance and opposite sign imaginary part of optical third-order nonlinearity.展开更多
To take advantage of cellulose material and prepare a kind of high performance fiber,multi-walled carbon nanotubes(MWNTs) were used as fillers to produce MWNTs/cellulose composite fibers using ionic liquid as solvent....To take advantage of cellulose material and prepare a kind of high performance fiber,multi-walled carbon nanotubes(MWNTs) were used as fillers to produce MWNTs/cellulose composite fibers using ionic liquid as solvent.The thermal properties,mechanical properties,and structure of the composite fibers were investigated.The wide angle X-ray diffraction(WAXD) measurements show that MWNTs/cellulose composite fibers have cellulose Ⅱ crystal structure.The results obtained from thermal gravimetric analysis(TGA) indicate that the addition of low nanotubes amounts leads to an increase in the degrade temperature.The tensile mechanical properties show that initial modulus and tensile strength considerably increase in the presence of nanotubes with a maximum for 66.7% and 22.7%.展开更多
Systematic investigations on the dielectric properties of multi-walled carbon nanotubes (MWNTs)-polyvinylidene fluoride (PVDF) composites with a wide MWNT concentration range (2 - 9 wt%) have been carried out. It is r...Systematic investigations on the dielectric properties of multi-walled carbon nanotubes (MWNTs)-polyvinylidene fluoride (PVDF) composites with a wide MWNT concentration range (2 - 9 wt%) have been carried out. It is revealed that the dielectric constant is increased by the addition of an appropriate amount of MWNTs at room temperature. However, when the concentration of MWNTs in the composites reaches above 5 wt%, negative dielectric constants and large dielectric loss in the composites are observed in the low frequency range. The ferroelectric CNT-PVDF polymer composites containing more than 5 wt% MWNTs have a strong dielectric absorption, which has the potential for acoustic applications.展开更多
Carbon nanotubes(CNTs)/epoxide resin composites were prepared,the mechanical and electrical properties of the composites were investigated. The effects of concentration and dispersion state of CNTs on the tensile stre...Carbon nanotubes(CNTs)/epoxide resin composites were prepared,the mechanical and electrical properties of the composites were investigated. The effects of concentration and dispersion state of CNTs on the tensile strength,tensile modulus and electrical resistance of the composites were studied. The results indicate that the CNTs can be dispersed well in the epoxide resin matrix by ultrasonic method,and the mechanical and electrical properties of epoxide resin matrix can be improved significantly. The tensile tests show that the tensile strength and tensile modulus are higher than those of epoxide resin if the content of CNTs is less than 1.75%(mass fraction). When the content of CNTs is 0.75%,the conditional best results are obtained,the tensile strength of the composite is the highest,increased by 18.3% and the tensile modulus is increased by 20.5% compared with the matrix. With the increase of CNTs,the electrical resistance of the composites decreases greatly,while the conductivity of the composite increases. The percolation threshold values of electrical characteristic transformation for this composite material were determined for the first time.展开更多
文摘In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.
基金Projects(21107032,51073072)supported by the National Natural Science Foundation of ChinaProjects(Y406469,Y4110555,Y4100745)supported by Natural Science Foundation of Zhejiang Province,ChinaProjects(2011AY1048-5,2011AY1030)supported by the Science Foundation of Jiaxing Science and Technology Bureau,China
文摘Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.
文摘Microwave dielectric measurements over the broad bandwith of 10 MHz to 20 GHz were conducted on composites comprising bundles of single-walled carbon nanotubes (SWNT) embedded in an epoxy matrix, in comparison to the nano-graphite and MWNT. It is found that both relative real and imaginary permittivity of the nanocomposites are strong functions of the SWNT concentration, showing large, wide dielectric and electrical response. Distinct resonance around 1.5 GHz is observed at high SWNT concentrations, accompa- nied by the downshift of the resonance frequency with increasing concentration. Largely, the SWNT-epoxy composites share the behavior of the MWNT owing to structural similarity, much more effective than the nano-graphite. The remarkable, broadband dielectric and electrical properties of the nanotubes acquired in the work originate from their unique seamless graphene architectures, modeled by two major contributions, dielectric relaxation/resonance and electronic conduction, which is substantiated by the agreement between theoretical analysis and experimental results. The carbon nanotube composites are prospective for microwave applications and offer experimental evidence for fundamental studies in low-dimensional systems.
基金This work was financially supported by the Foundation of the Future Industry of Shenzhen(Grant No.JCYJ20170413163838640)the Research and Development Project in Key Areas of Guangdong Province(Grant No.2020B010190002).
文摘Carbon nanotube(CNT)-reinforced composites have ultra-high elastic moduli,low densities,and fibrous structures.This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micro-to macro-scales.The nanocomposites were modeled using representative volume elements(RVEs),and finite element code was written to simulate the modeling and loading procedure and obtain equivalent mechanical properties of the RVEs with various volume fractions of CNTs,which can be used directly in the follow-up simulation studies on the macroscopic model of CNT-reinforced nanocomposites.When using the programming to simulate the deformation and fracture process of the CNT-reinforced epoxy composites,the mechanical parameters and stress-strain curves of the composites on themacro-scale were obtained by endowing the elements of the lattice models withRVE parameters.Tensile experiments of the CNT-reinforced composites were also carried out.The validity of the finite element simulation method was verified by comparing the results of the simulations and experiments.Finite element models of functionally graded CNT-reinforced composites(FG-CNTRC)with different distributions were established,and the tensile and three-point-bending conditions for various graded material models were simulated by the methods of lattice model and birth-death element to obtain the tensile and bending parameters.In addition,the influence of the distribution and volume ratio of the CNTs on the performance of the graded composite material structures was also analyzed.
基金supported by the National Natural Science Foundation of China(Nos.12172281 and 11972284)the Distinguished Young Scholars of Shaanxi Province of China(No.2019JC-29)+2 种基金the Foundation Strengthening Programme Technical Area Fund of Shaanxi Province of China(No.2021-JCJQ-JJ-0565)the Science and Technology Innovation Team of Shaanxi Province of China(No.2022TD-61)the Youth Innovation Team of Shaanxi Universities and Doctoral Dissertation Innovation Fund of Xi’an University of Technology of China(Nos.252072016 and 252072115)。
文摘Solvent-free nanofluids hold promise for many technologically significant applications.The liquid-like behavior,a typical rheological property of solvent-free nanofluids,has aroused considerable interests.However,there has been still lack of efficient methods to predict and control the liquid-like behavior of solvent-free nanofluids.In this paper,we propose a semi-discrete dynamic system with stochastic excitation describing the temperature change effects on the rheological property of multiwall carbon nanotubes(MWCNTs)modified by grafting sulfonic acid terminated organosilanes as corona and tertiary amine as canopy,which is a typical covalent-type solvent-free nanofluid system.The vibration of the grafting branches is simulated by employing a structure-preserving approach,and the shear force of grafting branches at the fixed end is computed subsequently.By taking the shear forces as an excitation acting on the MWCNTs,the axial motion of the MWCNTs is solved with the 7-point Gauss-Kronrod quadrature rule.The critical temperature associated with the appearance of the liquid-like behavior as well as the upper bound of the moving speed of the modified MWCNTs is determined,which can be used to predict and control the liquid-like behavior of the modified MWCNTs in engineering applications.
文摘Multi-walled carbon nanotube (MWCNT)-Fe composites were prepared via the metal organic chemical vapor deposi- tion by depositing iron pentacarbonyl on the surface of MWCNTs. The structural and morphological analyses demonstrated that Fe nanoparticles were deposited on the surface of the MWCNTs. The electromagnetic properties of the MWCNTs were significantly changed, and the absorbing capacity evidently improved after the Fe deposition on the MWCNT surface. A minimum reflection loss of -29.4 dB was observed at 8.39 GHz, and the less than -10 dB bandwidth was about 10.6 GHz, which covered the whole X band (8.2-12.4 GHz) and the whole Ku band (12.4-18 GHz), indicating that the MWCNT-Fe composites could be used as an effective microwave absorption material.
基金Project(20111080980) supported by the Initiative Scientific Research Program,Tsinghua University,ChinaProject(2013AA031201) supported by the High Technology Research and Development Program of China
文摘The super-aligned carbon nanotube(SACNT)films reinforced copper(Cu)laminar composites with different orientationsof CNT ply were fabricated by electrodeposition.The results show that the tensile strength and yield strength of cross-ply compositewith5.0%(volume fraction)of SACNT reach maximum of336.3MPa and246.0MPa respectively,increased by74.0%and124.5%compared with pure Cu prepared with the same method.Moreover,the electrical conductivities of all the prepared composites areover75%IACS.The result of TEM analysis shows that the size of Cu grain and the thickness of twin lamellae can be reduced byadding SACNT,and the refining effect in cross-ply composites is more significant than that in unidirectional ply composites.Theenhanced strength of the Cu/SACNT composites comes from not only the reinforcing effect of SACNT films but also the additionalstrengthening of the Cu grain refinement caused by CNT orientation.
基金the financial assistance received from the Department of Science and Technology(Government of India)for conducting this investigation(Project-SR/FTP/PS-054/2011(G))
文摘The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver–palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion(CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%?40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver–palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.
基金Supported by the National Natural Science Foundation of China under Grant No 10332020
文摘Carbonaceous nanomaterials such as carbon nanotubes (CNTs), magnetic metal nanomaterials and semicon- ductor nanomaterials are superior candidates for microwave absorbers. Taking full advantage of the features of CNTs, nanophase cobalt and nanophase zinc oxide, whose main microwave absorption mechanisms are based on resistance loss, magnetic loss and dielectric loss, we fabricate CNT/Co and CNT/ZnO heterostructure nanocom- posites, respectively. By using the CNTs, CNT/Co nanocomposites and CNT/ZnO nanocomposites as nanofillers, composites with polyester as matrix are prepared by in situ polymerization, and their microwave absorption per- formance is studied. It is indicated that the synergetic effects of the physic properties of different components in nano-heterostructures result in greatly enhanced microwave absorption performance in a wide frequency range. The absorption peak is increased, the absorption bandwidth is broadened, and the maximum peak shifts to a lower frequency.
基金supported by the National Natural Science Foundation of China (No.50971020)the National High-Tech Research and Development Program of China (No.2009AA03Z116)
文摘Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper powders to fabricate Mo-CNT/Cu composites by means of mechanical milling followed by spark plasma sintering. The Mo-CNTs were uniform dispersion in the Cu matrix when their contents were 2.5 vo1.%-7.5 vol.%, while some Mo-CNT clusters were clearly observed at additions of 10.0 vo1.%-15.0 vol.% Mo-CNTs in the mixture. The mechanical, electrical, and thermal properties of the Mo-CNT/Cu composites were characterized, and the results showed that the tensile strength and hardness were 2.0 and 2.2 times higher than those of CNT-free specimens, respectively. Moreover, the Mo-CNT/Cu composites exhibited an enhanced thermal conductivity but inferior electrical conductivity compared with sintered pure Cu. The uncoated CNT/Cu composites were fabricated by the similar processes, and the measured tensile strength, hardness, thermal conductivity, and electrical conductivity of the CNT/Cu composites were lower than those of the Mo-CNT/Cu composites.
基金supported by the National High-Tech Research and Development Program of China (No.2009AA03Z116)the National Natural Science Foundation of China (No.50971020)
文摘To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)/Al composites were prepared by the combination processes of powder mixing and spark plasma sintering.The influences of powder mixing and Mo-CNT content on the mechanical properties and electrical conductivity of the composites were investigated.The results show that magnetic stirring is better than mechanical milling for mixing the Mo-CNTs and Al powders.The electrical conductivity of the composites decreases with increasing Mo-CNT content.When the Mo-CNT content is 0.5wt%,the tensile strength and hardness of Mo-CNT/Al reach their maximum values.The tensile strength of 0.5wt% Mo-CNT/Al increases by 29.9%,while the electrical conductivity only decreases by 7.1%,relative to sintered pure Al.The phase analysis of Mo-CNT/Al composites reveals that there is no formation of Al carbide in the composites.
文摘The method of preparing the multi-walled carbon nanotubes (MWNTs)-polyacrylonitriIe (PAN) composite fibers is described and the effects of draw ratio on the mechanical properties of CNT/PAN fibers have also been discussed. The results show that the degrees of MWNTs dispersion in the polymer matrix have much effect on the mechanical properties.
基金Project(51464034) supported by the National Natural Science Foundation of ChinaProjects(GJJ151309,GJJ151010) supported by the Education Department of Jiangxi Province,China
文摘AZ91D alloy composites with1.0%CNTs have been fabricated by a method combined ball milling with stirring casting.The composite was investigated using optical microscopy(OM),X-ray diffraction(XRD),Fourier transform infrared spectroscope(FT-IR),scanning electron microscope(SEM),transmission electron microscope(TEM)and room temperature(RT)tensile test.Theresults show that CNTs were homogeneously distributed in the matrix and maintained integrated structure.The yield strength andductility of AZ91D/CNTs composite were improved by47.2%and112.2%,respectively,when compared with the AZ91alloy.Theuniform distribution of CNTs and the strong interfacial bonds between CNT and the matrix are dominated to the simultaneousimprovement of yield strength and ductility of the composite.In addition,the grain refinement as well as the finerβphase(Mg17Al12)with homogenous distribution in the matrix can also slightly assist to the enhancement of the mechanical properties of thecomposite.
基金partially financially supported by the Tsinghua University Initiative Scientific Research Program(No.20111080980)the High Technology Research and Development Program of China(No.2013AA031201)
文摘A homogeneous and compact super-aligned carbon nanotube(SACNT)-reinforced nickel-matrix composite was successfully prepared by electrodeposition. The mechanical properties of the laminar SACNT/Ni composites were substantially improved compared with those of pure nickel. With increasing content of SACNTs, the tensile strength of the composite increased and the elongation decreased because of the high-strength SACNTs bearing part of an applied load and the fine-grained strengthening mechanism. The nanohardness of the SACNT/Ni composites was improved from 3.92 GPa(pure nickel) to 4.62 GPa(Ni-4 vol%SACNTs). The uniform distribution of SACNTs in the composites and strong interfacial bonding between the SACNTs and the nickel matrix resulted in an improvement of the mechanical properties of the SACNT/Ni composites. The introduced SACNTs refined the nickel grains, increased the amount of crystal twins, and changed the preferred orientation of grain growth.
基金Projects(50372020 59972031) supported by the National Natural Science Foundation of China Project(01JJY2052)supported by Science Foundation of Hunan Province and Hunan University Research Foundation
文摘Cu matrix composites reinforced by carbon nanotubes(CNTs) were prepared. The effect of carbon nanotubes on mechanical and tribological properties of the Cu matrix composites were investigated. The chemical method for coating CNTs was reported. The morphology of the fracture surfaces and worn surface were examined by SEM. The results show that Cu/coated-CNTs composites have higher hardness, much better wear resistance and (anti-)(friction) properties than those of the reference Cu alloy (Cu-10Sn) and Cu/uncoated-CNTs composite sintered under the same conditions. The optimal mechanical properties of the composites occurred at 2.25%(mass fraction) of CNTs. The excellent wear resistance and anti-friction properties are attributed to the fiber strengthening effect of CNTs and the effect of the spherical wear debris containing carbon nanotubes on the tribo-surface.
文摘Multi-wall carbon nanotubes (MWNTs) have high mechanical properties and are considered a kind of realistic reinforcement for polymers, ceramics and metals. The hot press sintering and squeeze casting were adopted to synthesize MWNTs reinforced aluminum composites. In hot press sintered MWNTs/Al composites, MWNTs agglomerates distribute along aluminum powders and have low bonding strength with aluminum. But MWNTs agglomerates distribute evenly in the squeeze cast MWNTs/Al composites. Some dispersed nanotubes bond well with aluminum matrix and few dislocations can be found in the nanotube areas, which implies little thermal residual stress in squeeze cast MWNTs/Al composites. This indicates that the strengthen mechanisms in nanometer sized MWNTs/Al composites may be different from that in micrometer sized whisker composites.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90406024 and 10574157).
文摘Multiwalled carbon nanotubes and BaTiO3 composite films have been prepared by pulsed-laser deposition technique at room temperature and high temperature of 600℃, separately. The structures of the composite films are investigated by using scanning electron microscopy and x-ray diffraction. The optical behaviours of the samples produced at different temperatures are compared with Raman spectroscopy, and UV-visible absorption. And the observation by Z-scan technique reveals that the composite films have a larger optical nonlinearity, and the samples prepared at high temperatures have better transmittance and opposite sign imaginary part of optical third-order nonlinearity.
基金National Natural Science Foundations of China (No. 50873024,No. 50903015)
文摘To take advantage of cellulose material and prepare a kind of high performance fiber,multi-walled carbon nanotubes(MWNTs) were used as fillers to produce MWNTs/cellulose composite fibers using ionic liquid as solvent.The thermal properties,mechanical properties,and structure of the composite fibers were investigated.The wide angle X-ray diffraction(WAXD) measurements show that MWNTs/cellulose composite fibers have cellulose Ⅱ crystal structure.The results obtained from thermal gravimetric analysis(TGA) indicate that the addition of low nanotubes amounts leads to an increase in the degrade temperature.The tensile mechanical properties show that initial modulus and tensile strength considerably increase in the presence of nanotubes with a maximum for 66.7% and 22.7%.
文摘Systematic investigations on the dielectric properties of multi-walled carbon nanotubes (MWNTs)-polyvinylidene fluoride (PVDF) composites with a wide MWNT concentration range (2 - 9 wt%) have been carried out. It is revealed that the dielectric constant is increased by the addition of an appropriate amount of MWNTs at room temperature. However, when the concentration of MWNTs in the composites reaches above 5 wt%, negative dielectric constants and large dielectric loss in the composites are observed in the low frequency range. The ferroelectric CNT-PVDF polymer composites containing more than 5 wt% MWNTs have a strong dielectric absorption, which has the potential for acoustic applications.
文摘Carbon nanotubes(CNTs)/epoxide resin composites were prepared,the mechanical and electrical properties of the composites were investigated. The effects of concentration and dispersion state of CNTs on the tensile strength,tensile modulus and electrical resistance of the composites were studied. The results indicate that the CNTs can be dispersed well in the epoxide resin matrix by ultrasonic method,and the mechanical and electrical properties of epoxide resin matrix can be improved significantly. The tensile tests show that the tensile strength and tensile modulus are higher than those of epoxide resin if the content of CNTs is less than 1.75%(mass fraction). When the content of CNTs is 0.75%,the conditional best results are obtained,the tensile strength of the composite is the highest,increased by 18.3% and the tensile modulus is increased by 20.5% compared with the matrix. With the increase of CNTs,the electrical resistance of the composites decreases greatly,while the conductivity of the composite increases. The percolation threshold values of electrical characteristic transformation for this composite material were determined for the first time.