期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
关于polylogarithm函数新的循环公式(英文) 被引量:1
1
作者 何圆 张家玲 《数学杂志》 北大核心 2017年第6期1154-1160,共7页
本文对polylogarithm函数在负整数点的情形作了进一步的研究.利用生成函数方法及Padé估计技巧,建立了此类函数的一些新的循环公式,并给出了主要结果的一些特殊情况.
关键词 polylogarithm函数 生成函数 Pade估计 循环公式
下载PDF
Convergence Phenomenon with Fourier Series of tg(x2)and Alike
2
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2024年第7期556-595,共40页
The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generali... The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generalized functions and the convergence is weak convergence in the sense of the convergence of continuous linear functionals defining them. The figures show that the approximations of the Fourier series possess oscillations around the function which they represent in a broad band embedding them. This is some analogue to the Gibbs phenomenon. A modification of Fourier series by expansion in powers cosn(x)for the symmetric part of functions and sin(x)cosn−1(x)for the antisymmetric part (analogous to Taylor series) is discussed and illustrated by examples. The Fourier series and their convergence behavior are illustrated also for some 2π-periodic delta-function-like sequences connected with the Poisson theorem showing non-vanishing oscillations around the singularities similar to the Gibbs phenomenon in the neighborhood of discontinuities of functions. . 展开更多
关键词 Gibbs Phenomenon Generalized functions Weak Convergence Chebyshev Polynomials of First and Second Kind Even and Odd Generating functions for Chebyshev Polynomials polylogarithmS Completeness Relations
下载PDF
Some Results on Type 2 Degenerate Poly-Fubini Polynomials and Numbers 被引量:3
3
作者 Ghulam Muhiuddin Waseem AKhan +1 位作者 Abdulghani Muhyi Deena Al-Kadi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期1051-1073,共23页
In this paper,we introduce type 2 degenerate poly-Fubini polynomials and derive several interesting characteristics and properties.In addition,we define type 2 degenerate unipoly-Fubini polynomials and establish some ... In this paper,we introduce type 2 degenerate poly-Fubini polynomials and derive several interesting characteristics and properties.In addition,we define type 2 degenerate unipoly-Fubini polynomials and establish some certain identities.Furthermore,we give some relationships between degenerate unipoly polynomials and special numbers and polynomials.In the last section,certain beautiful zeros and graphical representations of type 2 degenerate poly-Fubini polynomials are shown. 展开更多
关键词 Type 2 degenerate poly-Fubini polynomials modified degenerate polylogarithm function unipoly functions
下载PDF
关于一类poly-Dedekind DC和的研究
4
作者 马元魁 罗玲玲 +1 位作者 KIM Taekyun 李红泽 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第3期438-442,共5页
研究了Dedekind DC和的一个新的推广——poly-Dedekind DC和。Dedekind DC和中的Euler函数替换成了由polylogarithm函数定义的poly-Euler函数。利用polylogarithm函数的定义、第二类Stirling数的定义、Euler多项式的定义,得到了此类poly... 研究了Dedekind DC和的一个新的推广——poly-Dedekind DC和。Dedekind DC和中的Euler函数替换成了由polylogarithm函数定义的poly-Euler函数。利用polylogarithm函数的定义、第二类Stirling数的定义、Euler多项式的定义,得到了此类poly-Euler函数满足的一些恒等式,包括此类poly-Euler数与第二类Stirling数之间的关系,以及此类poly-Euler多项式与Euler多项式、第二类Stirling数之间的关系,并证明了此poly-Dedekind DC和满足互反关系。正如经典的Dedekind和一样,可进一步探讨其与模形式、ζ函数以及三角和的关系。 展开更多
关键词 poly-Dedekind DC和 polylogarithm函数 poly-Euler多项式
下载PDF
The structural elucidation of Eisenstein's formula
5
作者 HASHIMOTO Masahiro KANEMITSU Shigeru 《Science China Mathematics》 SCIE 2010年第9期2341-2350,共10页
In this paper,we shall give a complete structural description of generalizations of the classical Eisenstein formula that expresses the first periodic Bernoulli polynomial as a finite combination of cotangent values,a... In this paper,we shall give a complete structural description of generalizations of the classical Eisenstein formula that expresses the first periodic Bernoulli polynomial as a finite combination of cotangent values,as a relation between two bases of the vector space of periodic Dirichlet series.We shall also determine the limiting behavior of them,giving rise to Gauss' famous closed formula for the values of the digamma function at rational points on the one hand and elucidation of Eisenstein-Wang's formulas in the context of Kubert functions on the other.W shall reveal that most of the relevant previous results are the combinations of the generalized Eisenstein formula and the functional equation. 展开更多
关键词 Eisenstein FORMULA HURWITZ ZETA-function polylogarithm function GAUSS FORMULA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部