The effects of super absorbent polymers (SAP) on yield as well as water-saving and drought-escaping mechanism in spring maize in the seasonal drought region were studied. As shown by the results, during the seasonal...The effects of super absorbent polymers (SAP) on yield as well as water-saving and drought-escaping mechanism in spring maize in the seasonal drought region were studied. As shown by the results, during the seasonal drought in southern China, SAP treatment promoted the soil moisture, improved the capability of absorption and transportation of roots, promoted physiological and biochemical functions, increased the chlorophyll content, photosynthetic rate and intercellular CO2 concentration, and reduced the stomatal conductance and transplre.tion rate. As a result, the economic characters of spring maize were improved, and the yield was increased.展开更多
The effect of super absorbent polymer(SAP) on the formation of tetrahydrofuran(THF) hydrate was studied by the successional cooling method.It was found that THF solution samples with 0.004 wt% and 0.03 wt% of SAP ...The effect of super absorbent polymer(SAP) on the formation of tetrahydrofuran(THF) hydrate was studied by the successional cooling method.It was found that THF solution samples with 0.004 wt% and 0.03 wt% of SAP formed THF hydrate completely during the same cooling process.The corresponding induction time was 16-29 min,14-31 min,respectively,which was obviously shorter than that of THF solution samples without SAP(25-62 min).It indicated that SAP accelerated the formation of THF hydrate.At the same time,the pictures of hydrate formation with and without SAP had been compared.It was found that SAP did not change the morphology of the hydrate.Finally,the mechanism of SAP promoting effect on the formation of THF hydrate was suggested.展开更多
We demonstrate the generation of a Q-switching pulse train in an erbium-doped fiber laser (EDFL) cavity using a newly developed cadmium selenide (CdSe) based saturable absorber (SA). The SA is obtained by embedd...We demonstrate the generation of a Q-switching pulse train in an erbium-doped fiber laser (EDFL) cavity using a newly developed cadmium selenide (CdSe) based saturable absorber (SA). The SA is obtained by embedding CdSe nanomaterials into a polymethyl methacrylate (PMMA) microfiber. It is incorporated into an EDFL cavity to generate a Q-switched laser operating at 1533.6nm. The repetition rates of the produced pulse train are tunable within 37–64kHz as the pump power is varied from 34mW to 74mW. The corresponding pulse width reduces from 7.96μs to 4.84μs, and the maximum pulse energy of 1.16nJ is obtained at the pump power of 74mW.展开更多
One of the ways of overcoming the cost of irrigation is through in-situ water harvesting at the plant roots. Super absorbent polymer (SAP) can facilitate water harvesting at the plant roots. This study attempted to as...One of the ways of overcoming the cost of irrigation is through in-situ water harvesting at the plant roots. Super absorbent polymer (SAP) can facilitate water harvesting at the plant roots. This study attempted to assess the effect of SAP on plant available water (PAW) of different soils. In this study, SAP was sequentially added at the rate of 0.2%, 0.3% and 0.5% of the soil weight and its impact assessed in clay, sandy clay and sandy loam soils. The moisture retention characteristics of the original and SAP treated soils were studied using soil water retention curves (SWRC) and results modelled using Gardner model. PAW was estimated from SWRC as the difference between moisture content at 1.5 and 3 bar in all soils. The difference in PAW between original and treated soils was assessed at 5% level of significance. The WRC of all the samples was adequately found to be described by the Gardner model (Coefficient of determination R<sup>2</sup> ≥ 98% and residual standard error (RSE) ≤ 0.04). SWRC changed with increase in SAP percentage in clay, sandy clay and sandy loam soils. Clay had a higher change in water retention then sandy clay and lastly sandy loam. Plant available water content (PAW) in all soils increased. In clay soil it increased with increase in SAP from 0.3291 at zero SAP to 0.6223 at 0.5% SAP. Sandy clay soil increased in PAW from 0.2721 at zero SAP to 0.5335 at 0.5% SAP and Sandy loam soils from 0.1691 at zero SAP to 0.3461 at 0.5% SAP. Hence, from the study SAP can be used to conserve irrigation water in the plant roots and therefore reducing the cost since PAW has been increased.展开更多
In order to establish a new method to eliminate toxicities of heavy metal ions to larval penaeid shrimp, the effects of copper, zinc, lead and cadmium ions on larval metamorphosis of Penaeus chinensis at each stage we...In order to establish a new method to eliminate toxicities of heavy metal ions to larval penaeid shrimp, the effects of copper, zinc, lead and cadmium ions on larval metamorphosis of Penaeus chinensis at each stage were determined in detail, and two methods eliminating toxicities were compared. The results indicate that sensitivity of larvae to heavy metal ions decreases in the order of nauplii, protozoea, mysis and postlarvae. The phytoplankton food can reduce, by chetating, the toxicities of heavy metal ions. Both EDTA chelation and PHMA absorption can be used to eliminate the toxicities effectively and there is no significant difference between the two methods. EDTA is harmful to larval P. chinensis at high concentration but affects neither survival nor metamorphosis at below 10 mg/dm3. It is preliminarily observed that copper and zinc ions at low concentration are beneficial to the development of larvae after protozoea stage. It is suggested that it is unnecessary to e-liminate the effects of heavy metal ions in the culture of penaeid shrimp, under normal conditions after protozoea stage.展开更多
Due to large volume and high hardness of thermal insulation materials mostly used in high temperature fields, a composite cooling powder and its thixotropic hydrogel for thermal protection are presented. The core of c...Due to large volume and high hardness of thermal insulation materials mostly used in high temperature fields, a composite cooling powder and its thixotropic hydrogel for thermal protection are presented. The core of composite cooling material powder is super absorbent polymer, composing with metal salt, polysaccharide hydrosol and inorganic particles and other modifiers through a series of composite process, which can be easily stored for a long time. When needed, the powder can be mixed with water to obtain a kind of thixotropic hydrogel in a very short time. Experimental results show this thermal protection technology with thixotropic ability has excellent thermal protection performance, meanwhile flexible, adhesive and low cost, which exerts instantaneous cooling, efficient thermal protection and long-lasting flame-retardant protection.展开更多
We demonstrate the generation of Q-switched pulses from an ytterbium-doped fiber laser(YDFL) using quantum dot(QD) CdSe as a passive saturable absorber(SA). The CdSe QD is fabricated by the synthesis of CdO,Se, ...We demonstrate the generation of Q-switched pulses from an ytterbium-doped fiber laser(YDFL) using quantum dot(QD) CdSe as a passive saturable absorber(SA). The CdSe QD is fabricated by the synthesis of CdO,Se, and manganese acetate and paraffin oil and oleic acid as the solvent and surfactant, respectively. The CdSe QD is then doped into poly-methyl-methacrylate(PMMA) via an emulsion polymerization process. A PMMAhosted CdSe QD thin flake with a homogeneous end surface is then formed and placed between two ferrules and assembled in a YDFL cavity to achieve the Q-switching operation with a repetition rate of 24.45 to 40.50 kHz while varying the pump power from 975 to 1196 mW. The pulse width changes from 6.78 to 3.65 μs with a maximum calculated pulse energy at 0.77 μJ at a pump power of 1101 mW. This work may be the first demonstration of CdSe QD-based Q-switching in an all-fiber configuration that should give proportional insight into semiconductor QD materials in photonics applications.展开更多
基金Supported by Key Projects in the National Science&TechnologyPillar Program(2006BAD04B07-2)Sic-tech Innovation Projectof Hunan Academy of Agricultural Sciences(2009hnnkycx30)~~
文摘The effects of super absorbent polymers (SAP) on yield as well as water-saving and drought-escaping mechanism in spring maize in the seasonal drought region were studied. As shown by the results, during the seasonal drought in southern China, SAP treatment promoted the soil moisture, improved the capability of absorption and transportation of roots, promoted physiological and biochemical functions, increased the chlorophyll content, photosynthetic rate and intercellular CO2 concentration, and reduced the stomatal conductance and transplre.tion rate. As a result, the economic characters of spring maize were improved, and the yield was increased.
文摘The effect of super absorbent polymer(SAP) on the formation of tetrahydrofuran(THF) hydrate was studied by the successional cooling method.It was found that THF solution samples with 0.004 wt% and 0.03 wt% of SAP formed THF hydrate completely during the same cooling process.The corresponding induction time was 16-29 min,14-31 min,respectively,which was obviously shorter than that of THF solution samples without SAP(25-62 min).It indicated that SAP accelerated the formation of THF hydrate.At the same time,the pictures of hydrate formation with and without SAP had been compared.It was found that SAP did not change the morphology of the hydrate.Finally,the mechanism of SAP promoting effect on the formation of THF hydrate was suggested.
文摘We demonstrate the generation of a Q-switching pulse train in an erbium-doped fiber laser (EDFL) cavity using a newly developed cadmium selenide (CdSe) based saturable absorber (SA). The SA is obtained by embedding CdSe nanomaterials into a polymethyl methacrylate (PMMA) microfiber. It is incorporated into an EDFL cavity to generate a Q-switched laser operating at 1533.6nm. The repetition rates of the produced pulse train are tunable within 37–64kHz as the pump power is varied from 34mW to 74mW. The corresponding pulse width reduces from 7.96μs to 4.84μs, and the maximum pulse energy of 1.16nJ is obtained at the pump power of 74mW.
文摘One of the ways of overcoming the cost of irrigation is through in-situ water harvesting at the plant roots. Super absorbent polymer (SAP) can facilitate water harvesting at the plant roots. This study attempted to assess the effect of SAP on plant available water (PAW) of different soils. In this study, SAP was sequentially added at the rate of 0.2%, 0.3% and 0.5% of the soil weight and its impact assessed in clay, sandy clay and sandy loam soils. The moisture retention characteristics of the original and SAP treated soils were studied using soil water retention curves (SWRC) and results modelled using Gardner model. PAW was estimated from SWRC as the difference between moisture content at 1.5 and 3 bar in all soils. The difference in PAW between original and treated soils was assessed at 5% level of significance. The WRC of all the samples was adequately found to be described by the Gardner model (Coefficient of determination R<sup>2</sup> ≥ 98% and residual standard error (RSE) ≤ 0.04). SWRC changed with increase in SAP percentage in clay, sandy clay and sandy loam soils. Clay had a higher change in water retention then sandy clay and lastly sandy loam. Plant available water content (PAW) in all soils increased. In clay soil it increased with increase in SAP from 0.3291 at zero SAP to 0.6223 at 0.5% SAP. Sandy clay soil increased in PAW from 0.2721 at zero SAP to 0.5335 at 0.5% SAP and Sandy loam soils from 0.1691 at zero SAP to 0.3461 at 0.5% SAP. Hence, from the study SAP can be used to conserve irrigation water in the plant roots and therefore reducing the cost since PAW has been increased.
基金The project is supported by National Natural Science Foundation of China
文摘In order to establish a new method to eliminate toxicities of heavy metal ions to larval penaeid shrimp, the effects of copper, zinc, lead and cadmium ions on larval metamorphosis of Penaeus chinensis at each stage were determined in detail, and two methods eliminating toxicities were compared. The results indicate that sensitivity of larvae to heavy metal ions decreases in the order of nauplii, protozoea, mysis and postlarvae. The phytoplankton food can reduce, by chetating, the toxicities of heavy metal ions. Both EDTA chelation and PHMA absorption can be used to eliminate the toxicities effectively and there is no significant difference between the two methods. EDTA is harmful to larval P. chinensis at high concentration but affects neither survival nor metamorphosis at below 10 mg/dm3. It is preliminarily observed that copper and zinc ions at low concentration are beneficial to the development of larvae after protozoea stage. It is suggested that it is unnecessary to e-liminate the effects of heavy metal ions in the culture of penaeid shrimp, under normal conditions after protozoea stage.
文摘Due to large volume and high hardness of thermal insulation materials mostly used in high temperature fields, a composite cooling powder and its thixotropic hydrogel for thermal protection are presented. The core of composite cooling material powder is super absorbent polymer, composing with metal salt, polysaccharide hydrosol and inorganic particles and other modifiers through a series of composite process, which can be easily stored for a long time. When needed, the powder can be mixed with water to obtain a kind of thixotropic hydrogel in a very short time. Experimental results show this thermal protection technology with thixotropic ability has excellent thermal protection performance, meanwhile flexible, adhesive and low cost, which exerts instantaneous cooling, efficient thermal protection and long-lasting flame-retardant protection.
文摘We demonstrate the generation of Q-switched pulses from an ytterbium-doped fiber laser(YDFL) using quantum dot(QD) CdSe as a passive saturable absorber(SA). The CdSe QD is fabricated by the synthesis of CdO,Se, and manganese acetate and paraffin oil and oleic acid as the solvent and surfactant, respectively. The CdSe QD is then doped into poly-methyl-methacrylate(PMMA) via an emulsion polymerization process. A PMMAhosted CdSe QD thin flake with a homogeneous end surface is then formed and placed between two ferrules and assembled in a YDFL cavity to achieve the Q-switching operation with a repetition rate of 24.45 to 40.50 kHz while varying the pump power from 975 to 1196 mW. The pulse width changes from 6.78 to 3.65 μs with a maximum calculated pulse energy at 0.77 μJ at a pump power of 1101 mW. This work may be the first demonstration of CdSe QD-based Q-switching in an all-fiber configuration that should give proportional insight into semiconductor QD materials in photonics applications.