Polymer-metal oxane bonds (M-O-Si) can be created in the form of tight networks by silane plasma polymerization directly on the metal (e.g. copper) substrates. In this paper the structure and properties of the plasma-...Polymer-metal oxane bonds (M-O-Si) can be created in the form of tight networks by silane plasma polymerization directly on the metal (e.g. copper) substrates. In this paper the structure and properties of the plasma-deposited organosilane polymers, the corrosion performance of such coating system on copper substrates were investigated.展开更多
Three major types of protective coating of wood and wood-based materials have been considered. These three types include the coatings based on carboxyl-containing water-soluble polymers which are easily cross-linked b...Three major types of protective coating of wood and wood-based materials have been considered. These three types include the coatings based on carboxyl-containing water-soluble polymers which are easily cross-linked by inorganic salts or OH-containing compounds, pH-sensitive coatings and polymer multi-layer structures. First of three mentioned approaches allows affecting permeability and enhancing the prevention the loss of water from the surface of wood to its surrounding. The advantage of the second approach is its ability to vary and purposely adjust the polymer composition and the number and distribution of -COOH groups in the chain which make the originally water-soluble polymers completely insoluble. The strong feature of the third approach which includes broad use of hydrogen-bonded films produced by layer-by-layer self-assembly is the possibility of manipulation of coatings stability after construction.展开更多
In recent years, graphene has been widely employed in the field of metal corrosion protection owing to its outstanding impermeability and chemical stability, with examples of such metal protection including pure graph...In recent years, graphene has been widely employed in the field of metal corrosion protection owing to its outstanding impermeability and chemical stability, with examples of such metal protection including pure graphene coatings and graphene-based composite coatings. But the conductive graphene could promote the electrochemical reaction at the interface and accelerate the corrosion of metal substrates. More emerging graphene-like 2D nanosheets are attracting research attention for the application of metal anticorrosion, because of their barrier properties and poor conductivity, mainly including boron nitride(BN),molybdenum disulfide(MoS_(2)), zirconium phosphate(ZrP), and titanium carbide(MXene). In this review,the application of these graphene-like 2D nanosheets to metal protection is comprehensively reviewed.First, the general preparation methods of 2D nanosheets are briefly introduced. Second, surface functionalization of 2D nanosheets, including covalent and non-covalent modification, is described in detail.Third, the anticorrosion performance and optimization measures of pure 2D nanosheets coatings are summarized. Next, the protection performance, anticorrosive mechanism, and optimizations of 2D nanosheets composite coatings are presented. Finally, the future development of 2D nanosheets-based anticorrosive coatings has been prospected, and the challenges in the industrial application are discussed.展开更多
基金This project is supported by the Science Fund of the Chinese Academy of Sciences.
文摘Polymer-metal oxane bonds (M-O-Si) can be created in the form of tight networks by silane plasma polymerization directly on the metal (e.g. copper) substrates. In this paper the structure and properties of the plasma-deposited organosilane polymers, the corrosion performance of such coating system on copper substrates were investigated.
文摘Three major types of protective coating of wood and wood-based materials have been considered. These three types include the coatings based on carboxyl-containing water-soluble polymers which are easily cross-linked by inorganic salts or OH-containing compounds, pH-sensitive coatings and polymer multi-layer structures. First of three mentioned approaches allows affecting permeability and enhancing the prevention the loss of water from the surface of wood to its surrounding. The advantage of the second approach is its ability to vary and purposely adjust the polymer composition and the number and distribution of -COOH groups in the chain which make the originally water-soluble polymers completely insoluble. The strong feature of the third approach which includes broad use of hydrogen-bonded films produced by layer-by-layer self-assembly is the possibility of manipulation of coatings stability after construction.
基金financially supported by the National Natural Science Foundation of China(No.51973231)Guangdong Basic and Applied Basic Research Foundation(Nos.2021A1515012449,2019A1515010743)+1 种基金the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.20lgzd17)Open Project from State Key Laboratory of Inorganic Synthesis and Preparative Chemistry(No.2020-31)。
文摘In recent years, graphene has been widely employed in the field of metal corrosion protection owing to its outstanding impermeability and chemical stability, with examples of such metal protection including pure graphene coatings and graphene-based composite coatings. But the conductive graphene could promote the electrochemical reaction at the interface and accelerate the corrosion of metal substrates. More emerging graphene-like 2D nanosheets are attracting research attention for the application of metal anticorrosion, because of their barrier properties and poor conductivity, mainly including boron nitride(BN),molybdenum disulfide(MoS_(2)), zirconium phosphate(ZrP), and titanium carbide(MXene). In this review,the application of these graphene-like 2D nanosheets to metal protection is comprehensively reviewed.First, the general preparation methods of 2D nanosheets are briefly introduced. Second, surface functionalization of 2D nanosheets, including covalent and non-covalent modification, is described in detail.Third, the anticorrosion performance and optimization measures of pure 2D nanosheets coatings are summarized. Next, the protection performance, anticorrosive mechanism, and optimizations of 2D nanosheets composite coatings are presented. Finally, the future development of 2D nanosheets-based anticorrosive coatings has been prospected, and the challenges in the industrial application are discussed.