期刊文献+
共找到523篇文章
< 1 2 27 >
每页显示 20 50 100
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
1
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose ZWITTERION gel polymer electrolytes ionic conductivity dual-network structure
下载PDF
Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries 被引量:8
2
作者 Hao Chen Mengting Zheng +5 位作者 Shangshu Qian Han Yeu Ling Zhenzhen Wu Xianhu Liu Cheng Yan Shanqing Zhang 《Carbon Energy》 SCIE CAS 2021年第6期929-956,共28页
Solid polymer electrolytes(SPEs)have become increasingly attractive in solid-state lithium-ion batteries(SSLIBs)in recent years because of their inherent properties of flexibility,processability,and interfacial compat... Solid polymer electrolytes(SPEs)have become increasingly attractive in solid-state lithium-ion batteries(SSLIBs)in recent years because of their inherent properties of flexibility,processability,and interfacial compatibility.However,the commercialization of SPEs remains challenging for flexible and high-energy-density LIBs.The incorporation of functional additives into SPEs could significantly improve the electrochemical and mechanical properties of SPEs and has created some historical milestones in boosting the development of SPEs.In this study,we review the roles of additives in SPEs,highlighting the working mechanisms and functionalities of the additives.The additives could afford significant advantages in boosting ionic conductivity,increasing ion transference number,improving high-voltage stability,enhancing mechanical strength,inhibiting lithium dendrite,and reducing flammability.Moreover,the application of functional additives in high-voltage cathodes,lithium-sulfur batteries,and flexible lithiumion batteries is summarized.Finally,future research perspectives are proposed to overcome the unresolved technical hurdles and critical issues in additives of SPEs,such as facile fabrication process,interfacial compatibility,investigation of the working mechanism,and special functionalities. 展开更多
关键词 functional additive high voltage ionic conductivity lithium-ion batteries solid polymer electrolyte
下载PDF
Polymer dispersed ionic liquid electrolytes with high ionic conductivity for ultrastable solid-state lithium batteries 被引量:2
3
作者 Shengyu Qin Yaping Cao +7 位作者 Jianying Zhang Yunxiao Ren Chang Sun Shuoning Zhang Lanying Zhang Wei Hu Meina Yu Huai Yang 《Carbon Energy》 SCIE CSCD 2023年第5期115-126,共12页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electro... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries. 展开更多
关键词 high ionic conductivity lithium batteries solid polymer electrolytes solid-state batteries
下载PDF
Synthesis and Ionic Conductivity of Network Polymer Electrolytes with Internal Plasticizers
4
作者 JunJieKANG ShiBiFANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第1期87-89,共3页
Network polymer electrolytes with free oligo(oxyethylene) chains as internal plasticizers were prepared by cross-linking poly(ethylene glycol) acrylates. The effects of salt concentration and properties of internal pl... Network polymer electrolytes with free oligo(oxyethylene) chains as internal plasticizers were prepared by cross-linking poly(ethylene glycol) acrylates. The effects of salt concentration and properties of internal plasticizers on ionic conductivity were studied. 展开更多
关键词 polymer electrolyte ionic conductivity poly(ethylene glycol) acrylate.
下载PDF
Comprehensively-modified polymer electrolyte membranes with multifunctional PMIA for highly-stable all-solid-state lithium-ion batteries 被引量:7
5
作者 Lehao Liu Jinshan Mo +6 位作者 Jingru Li Jinxin Liu Hejin Yan Jing Lyu Bing Jiang Lihua Chu Meicheng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期334-343,I0010,共11页
Polyethylene oxide(PEO)-based electrolytes have obvious merits such as strong ability to dissolve salts(e.g.,LiTFSI)and high flexibility,but their applications in solid-state batteries is hindered by the low ion condu... Polyethylene oxide(PEO)-based electrolytes have obvious merits such as strong ability to dissolve salts(e.g.,LiTFSI)and high flexibility,but their applications in solid-state batteries is hindered by the low ion conductance and poor mechanical and thermal properties.Herein,poly(m-phenylene isophthalamide)(PMIA)is employed as a multifunctional additive to improve the overall properties of the PEO-based electrolytes.The hydrogen-bond interactions between PMIA and PEO/TFSI-can effectively prevent the PEO crystallization and meanwhile facilitate the LiTFSI dissociation,and thus greatly improve the ionic conductivity(two times that of the pristine electrolyte at room temperature).With the incorporation of the high-strength PMIA with tough amide-benzene backbones,the PMIA/PEO-LiTFSI composite polymer electrolyte(CPE)membranes also show much higher mechanical strength(2.96 MPa),thermostability(4190℃)and interfacial stability against Li dendrites(468 h at 0.10 mA cm-2)than the pristine electrolyte(0.32 MPa,364℃and short circuit after 246 h).Furthermore,the CPE-based LiFePO4/Li cells exhibit superior cycling stability(137 mAh g^-1 with 93%retention after 100 cycles at 0.5 C)and rate performance(123 mAh g^-1 at 1.0 C).This work provides a novel and effective CPE structure design strategy to achieve comprehensively-upgraded electrolytes for promising solid-state battery applications. 展开更多
关键词 Poly(m-phenylene isophthalamide) Composite polymer electrolyte Ion conductance Mechanical strength Solid-state battery
下载PDF
Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries
6
作者 Xue Gong Qin Xiao +4 位作者 Qing-Yin Li Wen-Cui Liang Feng Chen Long-Yu Li Shi-Jie Ren 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第8期1021-1028,共8页
Lithium-ion batteries(LIBs)benefit from an effective electrolyte system design in both terms of their safety and energy storage capability.Herein,a series of precursor membranes with high porosity were produced using ... Lithium-ion batteries(LIBs)benefit from an effective electrolyte system design in both terms of their safety and energy storage capability.Herein,a series of precursor membranes with high porosity were produced using electrospinning technology by mixing PVDF and triblock copolymer(PS-PEO-PS),resulting in a porous structure with good interconnections,which facilitates the absorbency of a large amount of electrolyte and further increases the ionic conductivity of gel polymer electrolytes(GPEs).It has been demonstrated that post-cross-linking of the precursor membranes increa ses the rigidity of the nanofibers,which allows the polymer film to be dimensionally sta ble up to 260℃while maintaining superior electrochemical properties.The obtained cross-linked GPEs(CGPEs)showed high ionic conductivity up to 4.53×10^(-3)S·cm^(-1).With the CGPE-25,the assembled Li/LiFeP04 half cells exhibited good rate capability and maintained a capacity of 99.4%and a coulombic efficiency of99.3%at 0.1 C.These results suggest that the combination of electrospinning technique and post-cross-linking is an effective method to construct polymer electrolytes with high thermal stability and steadily decent electrochemical performance,particularly useful for Lithium-ion battery applications that require high-temperature usage. 展开更多
关键词 ELECTROSPINNING CROSS-LINKED Gel polymer electrolytes lithium-ion batteries
原文传递
Designing mesostructured iron (Ⅱ) fluorides with a stable in situ polymer electrolyte interface for high-energy-density lithium-ion batteries
7
作者 Lidong Sun Yong Wang +5 位作者 Lingchen Kong Shaoshan Chen Cong Peng Jiahui Zheng Yu Li Wei Feng 《eScience》 2024年第1期132-142,共11页
As high-energy cathode materials,conversion-type metal fluorides provide a prospective pathway for developing next-generation lithium-ion batteries.However,they suffer from severe performance decay owing to continuous... As high-energy cathode materials,conversion-type metal fluorides provide a prospective pathway for developing next-generation lithium-ion batteries.However,they suffer from severe performance decay owing to continuous structural destruction and active material dissolution upon cycling,which worsen at elevated temperatures.Here,we design a novel FeF2 cathode with in situ polymerized solid-state electrolyte systems to enhance the cycling ability of metal fluorides at 60 C.Novel FeF2 with a mesoporous structure(meso-FeF2)improves Liþdiffusion and relieves the volume change that typically occurs during the alternating conversion reactions.The structural stability of the meso-FeF2 cathode is strengthened by an in situ polymerized solid-state electrolyte,which prevents the pulverization and ion dissolution that are inevitable for conventional liquid electrolytes.Under the double action of this in situ polymerized solid-state electrolyte and the meso-FeF2's mesoporous structure,the active material maintains an intact SEI layer and part of the mesoporous structure after long charge–discharge cycling,showing excellent cycling stability at high temperatures. 展开更多
关键词 Iron fluorides lithium-ion batteries In situ polymer electrolyte Mesoporous structure
原文传递
A gel polymer electrolyte with IL@UiO-66-NH_(2) as fillers for high-performance all-solid-state lithium metal batteries 被引量:4
8
作者 Tao Wei Qi Zhang +7 位作者 Sijia Wang Mengting Wang Ye Liu Cheng Sun Yanyan Zhou Qing Huang Xiangyun Qiu Fang Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1897-1905,共9页
All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance ... All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries. 展开更多
关键词 all solid-state lithium-ion batteries metal-organic frameworks gel polymer electrolytes ionic liquid solid electrolyte interphase
下载PDF
Electronegativity-Induced Single-Ion Conducting Polymer Electrolyte for Solid-State Lithium Batteries
9
作者 Tianyi Hou Yumin Qian +7 位作者 Dinggen Li Bo Xu Zhenyu Huang Xueting Liu Haonan Wang Bowen Jiang Henghui Xu Yunhui Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期40-48,共9页
The application of solid polymer electrolytes(SPEs)is severely impeded by the insufficient ionic conductivity and low Li^(+)transference numbers(t_(Li)^(+)).Here,we report an iodine-driven strategy to address both the... The application of solid polymer electrolytes(SPEs)is severely impeded by the insufficient ionic conductivity and low Li^(+)transference numbers(t_(Li)^(+)).Here,we report an iodine-driven strategy to address both the two longstanding issues of SPEs simultaneously.Electronegative lodine-containing groups introduced on polymer chains effectively attract Li^(+)ions,facilitate Li^(+)transport,and promote the dissociation of Li salts.Meanwhile,iodine is also favorable to alleviate the strong O-Li^(+)coordination through a Lewis acidbase interaction,further improving the ionic conductivity and t_(Li)^(+).As a proof of concept,an iodinated single-ion conducting polymer electrolyte(IPE)demonstrates a high ionic conductivity of 0.93 mS cm^(-1)and a high t_(Li)^(+)of 0.86 at 25℃,which is among the best results ever reported for SPEs.Moreover,symmetric Li/Li cells with IPE achieve a long-term stability over 2600 h through the in-situ formed LiF-rich interphase.As a result,Li-S battery with IPE maintains a high capacity of 623.7 mAh g^(-1)over 300 cycles with an average Coulombic efficiency of 99%.When matched with intercalation cathode chemistries,Li/IPE/LiFePO_(4)and Li/IPE/LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)solid-state batteries also deliver high-capacity retentions of 95%and 97%at 0.2 C after 120 cycles,respectively. 展开更多
关键词 IODINE lithium polymer electrolytes single-ion conducting solid-state batteries
下载PDF
Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries 被引量:4
10
作者 Q.Yang A.Wang +1 位作者 J.Luo W.Tang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期202-215,共14页
Because of its superior safety and excellent processability,solid polymer electrolytes(SPEs)have attracted widespread attention.In lithium based batteries,SPEs have great prospects in replacing leaky and flammable liq... Because of its superior safety and excellent processability,solid polymer electrolytes(SPEs)have attracted widespread attention.In lithium based batteries,SPEs have great prospects in replacing leaky and flammable liquid electrolytes.However,the low ionic conductivity of SPEs cannot meet the requirements of high energy density systems,which is also an important obstacle to its practical application.In this respect,escalating charge carriers(i.e.Li^(+))and Li^(+)transport paths are two major aspects of improving the ionic conductivity of SPEs.This article reviews recent advances from the two perspectives,and the underlying mechanism of these proposed strategies is discussed,including increasing the Li^(+)number and optimizing the Li^(+)transport paths through increasing the types and shortening the distance of Li^(+)transport path.It is hoped that this article can enlighten profound thinking and open up new ways to improve the ionic conductivity of SPEs. 展开更多
关键词 Solid polymer electrolyte Ion conductivity Charge carriers Transport paths Lithium battery
下载PDF
A Self-Healing and Nonflammable Cross-Linked Network Polymer Electrolyte with the Combination of Hydrogen Bonds and Dynamic Disulfide Bonds for Lithium Metal Batteries
11
作者 Kai Chen Yuxue Sun +2 位作者 Xiaorong Zhang Jun Liu Haiming Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期106-113,共8页
The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycli... The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycling performance and extending service life of LIBs.Here,we report a novel cross-linked network SHSPE(PDDP)containing hydrogen bonds and dynamic disulfide bonds with excellent self-healing properties and nonflammability.The combination of hydrogen bonding between urea groups and the metathesis reaction of dynamic disulfide bonds endows PDDP with rapid self-healing capacity at 28°C without external stimulation.Furthermore,the addition of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(EMIMTFSI)improves the ionic conductivity(1.13×10^(−4)S cm^(−1)at 28°C)and non-flammability of PDDP.The assembled Li/PDDP/LiFePO_(4)cell exhibits excellent cycling performance with a discharge capacity of 137 mA h g^(−1)after 300 cycles at 0.2 C.More importantly,the self-healed PDDP can recover almost the same ionic conductivity and cycling performance as the original PDDP. 展开更多
关键词 cross-linked network dynamic disulfide bonds lithium-ion batteries NONFLAMMABLE self-healing solid polymer electrolytes
下载PDF
Progress in Gel Polymer Electrolytes for Sodium-Ion Batteries
12
作者 Jinyun Zheng Wenjie Li +3 位作者 Xinxin Liu Jiawei Zhang Xiangming Feng Weihua Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期355-383,共29页
Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably th... Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably the safety problems such as flammability due to the use of the same type of organic liquid electrolyte with lithium-ion battery.Gel polymer electrolytes are being considered as an effective solution to replace conventional organic liquid electrolytes for building safer sodium-ion batteries.In this review paper,the authors present a comprehensive overview of the research progress in electrochemical and physical properties of the gel polymer electrolyte-based sodium batteries.The gel polymer electrolytes based on different polymer hosts namely poly(ethylene oxide),poly(acrylonitrile),poly(methyl methacrylate),poly(vinylidene fluoride),poly(vinylidene fluoride-hexafluoro propylene),and other new polymer networks are summarized.The ionic conductivity,ion transference number,electrochemical window,thermal stability,mechanical property,and interfacial issue with electrodes of gel polymer electrolytes,and the corresponding influence factors are described in detail.Furthermore,the ion transport pathway and ion conduction mechanism are analyzed and discussed.In addition,the advanced gel polymer electrolyte systems including flame-retardant polymer electrolytes,composite gel polymer electrolytes,copolymerization,single-ion conducting polymer electrolytes,etc.with more superior and functional performance are classified and summarized.Finally,the application prospects,development opportunities,remaining challenges,and possible solutions are discussed. 展开更多
关键词 cycling performance gel polymer electrolyte ion conduction SAFETY sodiumion battery
下载PDF
A new flame-retardant polymer electrolyte with enhanced Li-ion conductivity for safe lithium-sulfur batteries 被引量:1
13
作者 Hongping Li Yixi Kuai +3 位作者 Jun Yang Shin-ichi Hirano Yanna Nuli Jiulin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期616-622,共7页
Flame-retardant polymer electrolytes(FRSPEs)are attractive due to their potential for fundamentally settling the safety issues of liquid electrolytes.However,the current FRSPEs have introduced large quantity of flame-... Flame-retardant polymer electrolytes(FRSPEs)are attractive due to their potential for fundamentally settling the safety issues of liquid electrolytes.However,the current FRSPEs have introduced large quantity of flame-retardant composition which cannot conduct lithium ions,thus decreasing the Li-ion conductivity.Here,we synthesize a novel liquid monomer 2-((bis((2-oxo-1,3-dioxolan-4-yl)methoxy)phosphoryl)oxy)ethyl acrylate(BDPA)for preparing FRSPE by in-situ polymerization,in which PBDPA polymer can not only conduct lithium ions,but also prevent burning.The prepared FRSPE demonstrated outstanding flame-retardant property,favorable lithium-ion conductivity of 5.65×10^(-4) S cm^(-1) at ambient temperature,and a wide electrochemical window up to 4.5 V.Moreover,the Li/in-situ FRSPE/S@pPAN cell exhibited favorable electrochemical performances.We believe that this work provides an effective strategy for establishing high-performance fireproof quasi-solid-state battery system. 展开更多
关键词 polymer electrolyte Flame-retardance lithium-ion conductivity Lithium-sulfur battery
下载PDF
Promote the conductivity of solid polymer electrolyte at room temperature by constructing a dual range ionic conduction path 被引量:1
14
作者 Ruiyang Li Haiming Hua +4 位作者 Yuejing Zeng Jin Yang Zhiqiang Chen Peng Zhang Jinbao Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期395-403,I0011,共10页
Poly(ethylene oxide)(PEO)is a classic matrix model for solid polymer electrolyte which can not only dissociate lithium-ions(Li^(+)),but also can conduct Li^(+) through segmental motion in long-range.However,the crysta... Poly(ethylene oxide)(PEO)is a classic matrix model for solid polymer electrolyte which can not only dissociate lithium-ions(Li^(+)),but also can conduct Li^(+) through segmental motion in long-range.However,the crystal aggregation state of PEO restricts the conduction of Li^(+) especially at room temperature.In this work,an amorphous polymer electrolyte with ethylene oxide(EO)and propylene oxide(PO)block structure(B-PEG@DMC)synthesized by the transesterification is firstly obtained,showing an ionic conductivity value of 1.1×10^(5) S/cm at room temperature(25℃).According to the molecular dynamics(MD)simulation,the PO segments would lead to an inconsecutive and hampered conduction of Li^(+),which is not beneficial to the short range conduction of Li^(+).Thus the effect of transformation of aggregation state on the improveme nt of ionic conductivity is not eno ugh,it is n ecessary to further consider the differe nt coupled behaviours of EO and PO segments with Li^(+).In this way,we blend this amorphous polymer(B-PEG@DMC)with PEO to obtain a dual range ionic conductive solid polymer electrolyte(D-SPE)with further improved ionic conductivity promoted by constructing a dual range fast ionic conduction,which eventually shows a further improved ionic conductivity value of 2.3×10^(5) S/cm at room temperature. 展开更多
关键词 Solid polymer electrolyte Amorphous polymer ionic conductivity Room temperature Arrhenius equation
下载PDF
Quasi-solid-state polymer plastic crystal electrolyte for subzero lithium-ion batteries 被引量:2
15
作者 Yumei Zhou Fengrui Zhang +6 位作者 Peixin He Yuhong Zhang Yiyang Sun Jingjing Xu Jianchen Hu Haiyang Zhang Xiaodong Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期87-93,I0003,共8页
Succinonitrile(SN)-based polymer plastic crystal electrolytes(PPCEs)have attracted considerable attention as solid-state electrolytes owing to their high ionic conductivities similar to those of liquid electrolytes,ex... Succinonitrile(SN)-based polymer plastic crystal electrolytes(PPCEs)have attracted considerable attention as solid-state electrolytes owing to their high ionic conductivities similar to those of liquid electrolytes,excellent contacts with the electrodes,and good mechanic properties.As a crucial property of a solid-state electrolyte,the ionic conductivity of the PPCE directly depends on the interactions between the constituent parts including the polymer,lithium salt,and SN.A few studies have focused on the effects of polymer–lithium–salt and polymer–SN interactions on the PPCE ionic conductivity.Nevertheless,the impact of the lithium–salt–SN combination on the PPCE ionic conductivity has not been analyzed.In particular,tuning of the lithium-salt–SN interaction to fabricate a subzero PPCE with a high low-temperature ionic conductivity has not been reported.In this study,we design and fabricate five PPCE membranes with different weight ratios of Li N(SO2 CF3)2(Li TFSI)and SN to investigate the effect of the Li TFSI–SN interaction on the PPCE ionic conductivity.The ionic conductivities of the five PPCEs are investigated in the temperature range of–20 to 60°C by electro-chemical impedance spectroscopy.The interaction is analyzed by Fourier-transform infrared spectroscopy,Raman spectroscopy,and differential scanning calorimetry.The Li TFSI–SN interaction significantly influences the melting point of the PPCE,dissociation of the Li TFSI salt,and thus the PPCE ionic conductivity.By tuning the Li TFSI–SN interaction,a subzero workable PPCE membrane having an excellent low-temperature ionic conductivity(6×10-4 S cm–1 at 0°C)is obtained.The electro-chemical performance of the optimal PPCE is evaluated by using a Li Co O2/PPCE/Li4 Ti5 O12 cell,which confirms the application feasibility of the proposed quasisolid-state electrolyte in subzero workable lithium-ion batteries. 展开更多
关键词 SUCCINONITRILE polymer plastic crystal electrolyte ionic conductivity Lithium-salt–succinonitrile interaction Subzero lithium-ion battery
下载PDF
Synergetic Control of Li^(+)Transport Ability and Solid Electrolyte Interphase by Boron-Rich Hexagonal Skeleton Structured All-Solid-State Polymer Electrolyte
16
作者 Yanan Li Shunchao Ma +7 位作者 Yuehua Zhao Silin Chen Tingting Xiao Hongxing Yin Huiyu Song Xiumei Pan Lina Cong Haiming Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期154-163,共10页
High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incom... High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically. 展开更多
关键词 all-solid-state electrolyte boron-rich polymer lithium metal batteries lithium-ion transference number solid electrolyte interphase layer
下载PDF
Alkali Ionic Conductivity in Inorganic Glassy Electrolytes
17
作者 Ram Krishna Hona Mandy Guinn +2 位作者 Uttam S. Phuyal S’Nya Sanchez Gurjot S. Dhaliwal 《Journal of Materials Science and Chemical Engineering》 2023年第7期31-72,共42页
Glassy electrolytes could be a potential candidate for all-solid-state batteries that are considered new-generation energy storage devices. As glasses are one of the potential fast ion-conducting electrolytes, progres... Glassy electrolytes could be a potential candidate for all-solid-state batteries that are considered new-generation energy storage devices. As glasses are one of the potential fast ion-conducting electrolytes, progressive advances in glassy electrolytes have been undergoing to get commercial attention. However, the challenges offered by ionic conductivity at room temperature (10<sup>−5</sup> - 10<sup>−3</sup> S∙cm<sup>−1</sup>) in comparison to those of organic liquid electrolytes (10<sup>−2</sup> S∙cm<sup>−1</sup>) hindered the applicability of such electrolytes. To enhance the research development on ionic conductivity, the overall picture of the ionic conductivity of glassy electrolytes is reviewed in this article with a focus on alkali oxide and sulfide glasses. We portray here the techniques applied for alkali ion conductivity enhancement, such as methods of glass preparation, host optimization, doping, and salt addition for enhancing alkali ionic conductivity in the glasses. 展开更多
关键词 Glass electrolyte Solid State ionic Glass Battery Charge ANTIPEROVSKITE ionic conductivity
下载PDF
The Critical Role of Fillers in Composite Polymer Electrolytes for Lithium Battery 被引量:7
18
作者 Xueying Yang Jiaxiang Liu +5 位作者 Nanbiao Pei Zhiqiang Chen Ruiyang Li Lijun Fu Peng Zhang Jinbao Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期339-375,共37页
With excellent energy densities and highly safe performance,solidstate lithium batteries(SSLBs)have been hailed as promising energy storage devices.Solid-state electrolyte is the core component of SSLBs and plays an e... With excellent energy densities and highly safe performance,solidstate lithium batteries(SSLBs)have been hailed as promising energy storage devices.Solid-state electrolyte is the core component of SSLBs and plays an essential role in the safety and electrochemical performance of the cells.Composite polymer electrolytes(CPEs)are considered as one of the most promising candidates among all solid-state electrolytes due to their excellent comprehensive performance.In this review,we briefly introduce the components of CPEs,such as the polymer matrix and the species of fillers,as well as the integration of fillers in the polymers.In particular,we focus on the two major obstacles that affect the development of CPEs:the low ionic conductivity of the electrolyte and high interfacial impedance.We provide insight into the factors influencing ionic conductivity,in terms of macroscopic and microscopic aspects,including the aggregated structure of the polymer,ion migration rate and carrier concentration.In addition,we also discuss the electrode-electrolyte interface and summarize methods for improving this interface.It is expected that this review will provide feasible solutions for modifying CPEs through further understanding of the ion conduction mechanism in CPEs and for improving the compatibility of the electrode-electrolyte interface. 展开更多
关键词 Composite polymer electrolytes FILLERS ionic conductivity Electrode-electrolyte interface
下载PDF
Electrochemical behaviors of novel composite polymer electrolytes for lithium batteries
19
作者 GuorongChen PengfeiShi YongpingBail TaibingFan 《Journal of University of Science and Technology Beijing》 CSCD 2004年第4期359-363,共5页
A novel composite polymer electrolyte was prepared by blending an appropriateamount of LiClO_4 and 10 percent (mass fraction) fumed SiO_2 with the block copolymer of poly(ethylene oxide) (PEO) synthesized by poly (eth... A novel composite polymer electrolyte was prepared by blending an appropriateamount of LiClO_4 and 10 percent (mass fraction) fumed SiO_2 with the block copolymer of poly(ethylene oxide) (PEO) synthesized by poly (ethylene glycol) (PEG) 400 and CH_2C1_2 The ionicconductivity, electrochemical stability, interfacial characteristic and thermal behavior of thecomposite polymer electrolyte were studied by the measurements of AC impedance spectroscopy, linearsweep voltammetry and differential scanning calorimetry (DSC), respectively. The glass transitiontemperature acts as a function of salt concentration, which increases with the LiClO_4 content.Lewis acid-base model interaction mechanism was introduced to interpret the interactive relationbetween the filled fumed SiO_2 and the lithium salt in the composite polymer electrolyte. Over thesalt concentration range and the measured temperature, the maximum ionic conductivity of thecomposite polymer electrolyte (10^(-4.41) S/cm) appeared at EO/Li=25 (mole ratio) and 30 deg C, andthe beginning oxidative degradation potential versus Li beyond 5 V. 展开更多
关键词 composite polymer electrolyte ionic conductivity electrochemical stability Lewis acid-base model interaction
下载PDF
A quasi-solid-state electrolyte with high ionic conductivity for stable lithium-ion batteries 被引量:3
20
作者 ZHANG WenJing LI SenLin +3 位作者 ZHANG YuRong WANG XingHui LIU JingDong ZHENG YuanHui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第10期2369-2379,共11页
The practical applications of solid-state electrolytes in lithium-ion batteries(LIBs)are hindered by their low ionic conductivity and high interfacial resistance.Herein,an ethoxylated trimethylolpropane triacrylate ba... The practical applications of solid-state electrolytes in lithium-ion batteries(LIBs)are hindered by their low ionic conductivity and high interfacial resistance.Herein,an ethoxylated trimethylolpropane triacrylate based quasi-solid-state electrolyte(ETPTAQSSE)with a three-dimensional(3D)network is prepared by a one-step in-situ photopolymerization method.The 3D network is designed to overcome the contradiction between the plasticizer-related ionic conductivity and the thickness-dependent mechanical property of quasi-solid-state electrolytes.The ETPTA-QSSE achieves superb room-temperature ionic conductivity up to 4.55×10^(−3)S cm^(−1),a high lithium ion transference number of 0.57,along with a wide electrochemical window of 5.3 V(vs.Li+/Li),which outperforms most ever of the reported solid-state electrolytes.Owing to the robust network structure and the cathodeelectrolyte integrated electrode design,Li metal symmetrical cells show reduced interface resistance and reinforced electrode/electrolyte interface stability.When applying the ETPTA-QSSE in LiFePO_(4)||Li cells,the quasi-solid-state cell demonstrates an enhanced initial discharge capacity(155.5 mAh g^(−1)at 0.2 C)accompanied by a high average Coulombic efficiency of greater than 99.3%,offering capacity retention of 92%after 200 cycles.Accordingly,this work sheds light on the strategy of enhancing ionic conductivity and reducing interfacial resistance of quasi-solid-state electrolytes,which is promising for high-voltage LIBs. 展开更多
关键词 quasi-solid-state electrolyte ionic conductivity electrochemical window PHOTOpolymerIZATION lithium-ion batteries
原文传递
上一页 1 2 27 下一页 到第
使用帮助 返回顶部