期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Thermal conductivity model of filled polymer composites 被引量:9
1
作者 Ming-xia Shen Yin-xin Cui Jing He Yao-ming Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第5期623-631,共9页
Theoretical and empirical models for predicting the thermal conductivity of polymer composites were summarized since the 1920s.The effects of particle shape,filler amount,dispersion state of fillers,and interfacial th... Theoretical and empirical models for predicting the thermal conductivity of polymer composites were summarized since the 1920s.The effects of particle shape,filler amount,dispersion state of fillers,and interfacial thermal barrier on the thermal conductivity of filled polymer composites were investigated,and the agreement of experimental data with theoretical models in literatures was discussed.Silica with high thermal conductivity was chosen to mix with polyvinyl-acetate (EVA) copolymer to prepare SiO2/EVA co-films.Experimental data of the co-films' thermal conductivity were compared with some classical theoretical and empirical models.The results show that Agari's model,the mixed model,and the percolation model can predict well the thermal conductivity of SiO2/EVA co-films. 展开更多
关键词 polymer matrix composites thermal conductivity mathematical models polyvinyl acetates SILICA filled polymers.
下载PDF
Analysis of Hydration Mechanism and Microstructure of Composite Cementitious Materials for Filling Mining 被引量:2
2
作者 王忠昶 WANG Zechuan +1 位作者 XIA Hongchun WANG Hongfu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期910-913,共4页
To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious materia... To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious material was determined according to the chemical composition of cement clinker which was composed of the Portland cement 32.5R, CSA 42.5 sulphoaluminate cement and two gypsum(CS). The characterization of composite cementitious materials in different hydration ages was conducted by NMR, XRD and SEM techniques. The mechanism of hydration was explored. It is shown that the compressive strength of the test block increases gradually with the increase of hydration age. The microstructure of composite cementitious material can be changed from Al-O octahedron into Al-O tetrahedron in the hydration process. The hydrated alkali alumi niumsilicate formed with Si-O tetrahedron and Al-O tetrahedron. The degree of polymerization of Si-O tetrahedron gradually increased, and the structural strength of cementitious materials continued to increase. The diffraction peak of clinker minerals gradually decreased with the extension of hydration age. The CaSO4 completely hydrated to produce Aft during hydration which resulted in high early strength of cementitious material. The early hydration product of composite cementitious materials was Aft with a needle bar structure. The main middle and last hydration products were CSH gel and CH gel with dense prismatic shape. The microscopic pore of composite cementitious material gradually decreased and improved the later strength of filling block. The strong support was provided for mined-out area. 展开更多
关键词 filling composite cementitious material degree of polymerization hydration products microstructure
下载PDF
DYNAMIC RHEOLOGICAL BEHAVIOR OF POLYPROPYLENE FILLED WITH ULTRA-FINE POWDERED RUBBER PARTICLES 被引量:7
3
作者 郑强 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2004年第4期363-367,共5页
Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on ... Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on an Advanced Rheometric Expansion System (ARES). A specific viscoelastic phenomenon, i.e. 'the second plateau', appeared at low frequencies, and exhibits a certain dependence on the amount of rubber particles and the dispersion state in the matrix. This phenomenon is attributed to the formation of aggregation structure of rubber particles. The analyses of Cole-Cole diagrams of the dynamic viscoelastic functions suggest that the heterogeneity of the composites is enhanced on increasing both particle content and temperature. 展开更多
关键词 POLYPROPYLENE Ultra-fine powdered rubber Filled polymers Dynamic rheological behavior Aggregation of fillers
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部