Vacuum-assisted spin-coating is an effective polymer filling technology for sidewall insulating of through-silicon-via(TSV).This paper investigated the flow mechanism of the vacuum-assisted polymer filling process bas...Vacuum-assisted spin-coating is an effective polymer filling technology for sidewall insulating of through-silicon-via(TSV).This paper investigated the flow mechanism of the vacuum-assisted polymer filling process based on experiments and numerical simulation,and studied the effect of vacuum pressure,viscosity of polymer and aspect-ratio of trench on the filling performance.A 2D axisymmetric model,consisting of polymer partially filled into the trench and void at the bottom of trench,was developed for the computational fluid dynamics(CFD)simulation.The simulation results indicate that the vacuum-assisted polymer filling process goes through four stages,including bubble formation,bubble burst,air elimination and polymer re-filling.Moreover,the simulation results suggest that the pressure significantly affects the bubble formation and the polymer re-filling procedure,and the polymer viscosity and the trench aspect-ratio influence the duration of air elimination.展开更多
Theoretical and empirical models for predicting the thermal conductivity of polymer composites were summarized since the 1920s.The effects of particle shape,filler amount,dispersion state of fillers,and interfacial th...Theoretical and empirical models for predicting the thermal conductivity of polymer composites were summarized since the 1920s.The effects of particle shape,filler amount,dispersion state of fillers,and interfacial thermal barrier on the thermal conductivity of filled polymer composites were investigated,and the agreement of experimental data with theoretical models in literatures was discussed.Silica with high thermal conductivity was chosen to mix with polyvinyl-acetate (EVA) copolymer to prepare SiO2/EVA co-films.Experimental data of the co-films' thermal conductivity were compared with some classical theoretical and empirical models.The results show that Agari's model,the mixed model,and the percolation model can predict well the thermal conductivity of SiO2/EVA co-films.展开更多
To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious materia...To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious material was determined according to the chemical composition of cement clinker which was composed of the Portland cement 32.5R, CSA 42.5 sulphoaluminate cement and two gypsum(CS). The characterization of composite cementitious materials in different hydration ages was conducted by NMR, XRD and SEM techniques. The mechanism of hydration was explored. It is shown that the compressive strength of the test block increases gradually with the increase of hydration age. The microstructure of composite cementitious material can be changed from Al-O octahedron into Al-O tetrahedron in the hydration process. The hydrated alkali alumi niumsilicate formed with Si-O tetrahedron and Al-O tetrahedron. The degree of polymerization of Si-O tetrahedron gradually increased, and the structural strength of cementitious materials continued to increase. The diffraction peak of clinker minerals gradually decreased with the extension of hydration age. The CaSO4 completely hydrated to produce Aft during hydration which resulted in high early strength of cementitious material. The early hydration product of composite cementitious materials was Aft with a needle bar structure. The main middle and last hydration products were CSH gel and CH gel with dense prismatic shape. The microscopic pore of composite cementitious material gradually decreased and improved the later strength of filling block. The strong support was provided for mined-out area.展开更多
Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on ...Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on an Advanced Rheometric Expansion System (ARES). A specific viscoelastic phenomenon, i.e. 'the second plateau', appeared at low frequencies, and exhibits a certain dependence on the amount of rubber particles and the dispersion state in the matrix. This phenomenon is attributed to the formation of aggregation structure of rubber particles. The analyses of Cole-Cole diagrams of the dynamic viscoelastic functions suggest that the heterogeneity of the composites is enhanced on increasing both particle content and temperature.展开更多
文摘Vacuum-assisted spin-coating is an effective polymer filling technology for sidewall insulating of through-silicon-via(TSV).This paper investigated the flow mechanism of the vacuum-assisted polymer filling process based on experiments and numerical simulation,and studied the effect of vacuum pressure,viscosity of polymer and aspect-ratio of trench on the filling performance.A 2D axisymmetric model,consisting of polymer partially filled into the trench and void at the bottom of trench,was developed for the computational fluid dynamics(CFD)simulation.The simulation results indicate that the vacuum-assisted polymer filling process goes through four stages,including bubble formation,bubble burst,air elimination and polymer re-filling.Moreover,the simulation results suggest that the pressure significantly affects the bubble formation and the polymer re-filling procedure,and the polymer viscosity and the trench aspect-ratio influence the duration of air elimination.
基金supported by the High-Tech Research and Development Program of China (863 Program) (No.2006AA050203)
文摘Theoretical and empirical models for predicting the thermal conductivity of polymer composites were summarized since the 1920s.The effects of particle shape,filler amount,dispersion state of fillers,and interfacial thermal barrier on the thermal conductivity of filled polymer composites were investigated,and the agreement of experimental data with theoretical models in literatures was discussed.Silica with high thermal conductivity was chosen to mix with polyvinyl-acetate (EVA) copolymer to prepare SiO2/EVA co-films.Experimental data of the co-films' thermal conductivity were compared with some classical theoretical and empirical models.The results show that Agari's model,the mixed model,and the percolation model can predict well the thermal conductivity of SiO2/EVA co-films.
基金Funded by the National Natural Science Foundation of China(No.51574055)the Natural Science Foundation of Liaoning Province(No.20170540143)
文摘To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious material was determined according to the chemical composition of cement clinker which was composed of the Portland cement 32.5R, CSA 42.5 sulphoaluminate cement and two gypsum(CS). The characterization of composite cementitious materials in different hydration ages was conducted by NMR, XRD and SEM techniques. The mechanism of hydration was explored. It is shown that the compressive strength of the test block increases gradually with the increase of hydration age. The microstructure of composite cementitious material can be changed from Al-O octahedron into Al-O tetrahedron in the hydration process. The hydrated alkali alumi niumsilicate formed with Si-O tetrahedron and Al-O tetrahedron. The degree of polymerization of Si-O tetrahedron gradually increased, and the structural strength of cementitious materials continued to increase. The diffraction peak of clinker minerals gradually decreased with the extension of hydration age. The CaSO4 completely hydrated to produce Aft during hydration which resulted in high early strength of cementitious material. The early hydration product of composite cementitious materials was Aft with a needle bar structure. The main middle and last hydration products were CSH gel and CH gel with dense prismatic shape. The microscopic pore of composite cementitious material gradually decreased and improved the later strength of filling block. The strong support was provided for mined-out area.
基金This work was supported by the National Science Fund for Distinguished Young Scholars of China (No.50125312) andSpecial Funds for Major State Basic Research Projects (No.G1999064800).
文摘Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on an Advanced Rheometric Expansion System (ARES). A specific viscoelastic phenomenon, i.e. 'the second plateau', appeared at low frequencies, and exhibits a certain dependence on the amount of rubber particles and the dispersion state in the matrix. This phenomenon is attributed to the formation of aggregation structure of rubber particles. The analyses of Cole-Cole diagrams of the dynamic viscoelastic functions suggest that the heterogeneity of the composites is enhanced on increasing both particle content and temperature.