期刊文献+
共找到275篇文章
< 1 2 14 >
每页显示 20 50 100
Preparation of Composite Microporous Silica Membranes Using TEOS and 1,2-Bis(triethoxysilyl)ethane as Precursors for Gas Separation 被引量:2
1
作者 漆虹 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第3期404-409,共6页
This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)eth... This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)ethane, BTESE]as precursors.A stable nano-sized composite silica sol with a mean volume size of^5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporousγ-Al2O3 intermediate layer by using dip-coating approach,followed by calcination under pure nitrogen atmosphere.The composite silica membranes exhibit molecular sieve properties for small gases like H2,CO2,O2,N2,CH4 and SF6 with hydrogen permeances in the range of(1-4)×10 -7mol·m -2·s -1·Pa -1(measured at 200°C,3.0×105 Pa).With respect to the membrane calcined at 500°C,it is found that the permselectivities of H 2 (0.289 nm)with respect to N2(0.365 nm),CH4(0.384 nm)and SF6(0.55 nm)are 22.9,42 and>1000,respectively, which are all much higher than the corresponding Knudsen values(H2/N2=3.7,H2/CH4=2.8,and H2/SF6=8.5). 展开更多
关键词 TETRAETHYLORTHOSILICATE 1 2-bis(triethoxysilyl)ethane composite silica membranes gas separation mo- lecular sieving
下载PDF
Tuning sol size to optimize organosilica membranes for gas separation 被引量:5
2
作者 Huating Song Yibin Wei +2 位作者 Chenying Wang Shuaifei Zhao Hong Qi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期53-59,共7页
A series of organosilica sols are prepared by the polymeric sol–gel method using 1,2-bis(triethoxysilyl)ethane(BTESE)as the precursor.Particle size distributions of the BTESE-derived sols are systematically investiga... A series of organosilica sols are prepared by the polymeric sol–gel method using 1,2-bis(triethoxysilyl)ethane(BTESE)as the precursor.Particle size distributions of the BTESE-derived sols are systematically investigated by carefully adjusting the synthesis parameters(i.e.,water ratios,acid ratios and solvent ratios)in the sol process.In certain conditions,increasing the water ratio or the acid ratio tends to cause larger sol sizes and bimodal particle size distributions.However,higher solvent ratios lead to smaller sol sizes and unimodal particle size distributions.The organosilica membranes prepared from the optimized sols show excellent H_2 permeances(up to 4.2×10^(-7)mol·m^(-2)·s^(-1)·Pa^(-1))and gas permselectitivies(H_2/CO_2 is 9.5,H_2/N_2 is 50 and H_2/CH_4 is 68).This study offers significant insights into the relationship between the sol synthesis parameters,sol sizes and membrane performance. 展开更多
关键词 Organosilica membrane Sol-gelSol synthesis gas separation
下载PDF
Enhanced gas separation performance of mixed matrix hollow fiber membranes containing post-functionalized S-MIL-53 被引量:6
3
作者 Haitao Zhu Xingming Jie +3 位作者 Lina Wang Guodong Kang Dandan Liu Yiming Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期781-790,共10页
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ... Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization. 展开更多
关键词 Post-functionalized S-MIL-53 Mixed matrix hollow fiber membranes CO2 permeance Plasticization gas separation
下载PDF
Gas separation using sol–gel derived microporous zirconia membranes with high hydrothermal stability 被引量:1
4
作者 李丽 漆虹 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1300-1306,共7页
A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was f... A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexa fluoride, around Knudsen values. A much lower CO2permeance(3.7 × 10-9mol·m-2·s-1·Pa-1)was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination temperature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular sieving property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 k Pa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10-8and ~ 3 × 10-9mol·m-2·s-1·Pa-1, respectively. Both H2 and CO2permeances of the zirconia membrane decreased with exposure time to 100 k Pa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10-8mol·m-2·s-1·Pa-1and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure. 展开更多
关键词 Microporous membrane Zirconia gas separation Sol–gel process Hydrothermal stability
下载PDF
A CONDENSED REVIEW ON THE FABRICATION OF HOLLOW FIBER MEMBRANES FOR GAS SEPARATION:HISTORICAL DEVELOPMENT AND TECHNOLOGY CHALLENGES AHEAD
5
作者 Chung Tai-Shung (Institute of Materials Research & Engineering 3 Research Link, Singapore, 117602) 《化工学报》 EI CAS CSCD 北大核心 2000年第S1期1-4,共4页
A review on the polymeric hollow fibers membranes for gas separation has been conducted. In order to deyelop high performance membranes for gas separation, there are a few technology challenges awaiting the chemical e... A review on the polymeric hollow fibers membranes for gas separation has been conducted. In order to deyelop high performance membranes for gas separation, there are a few technology challenges awaiting the chemical engineers to overcome. There are four major challenges, namely: 1) material selection and synthesis; 2) fabrication of hollow fiber membranes with an ultra- thin dense selective layer; 3) materials against plasticization; and 4) aging. In each area, we summarize the scientific accomplishments and technical difficulties. 展开更多
关键词 hollow fiber membranes characterization PLASTICIZATION AGING gas separation
下载PDF
Support surface pore structures matter: Effects of support surface pore structures on the TFC gas separation membrane performance over a wide pressure range 被引量:1
6
作者 Mengqi Shi Chenxi Dong +3 位作者 Zhi Wang Xinxia Tian Song Zhao Jixiao Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第8期1807-1816,共10页
In this work, the effects of support surface pore structures(including surface pore size, surface pore density and surface porosity) on the performance of thin film composite(TFC) gas separation membrane over a wide p... In this work, the effects of support surface pore structures(including surface pore size, surface pore density and surface porosity) on the performance of thin film composite(TFC) gas separation membrane over a wide pressure range(from 0.3 to 2.0 MPa) were studied. To fulfill it, the polysulfone(PSf) supports with different surface pore structures were prepared. Two kinds of wide-accepted polymeric membrane materials, i.e., polyvinylamine(PVAm) and Pebax 1657 copolymer, were used as skin layer materials. We pointed out for the first time that the support surface average pore size and pore density could affect the chain mobility of polymer of skin layer at the support surface pore entrance, then, can affect the TFC membrane performance. Besides, we also discussed the effects of support on the TFC membrane performance when the feed pressure changes for the first time. This work can provide guidance for choosing a suitable support for TFC gas separation membrane. 展开更多
关键词 SUPPORT SURFACE PORE structures Thin film composite gas separation membrane polymer mobility
下载PDF
MORPHOLOGIES AND GAS SEPARATION PROPERTIES OF MELT-SPUN ASYMMETRIC POLY(4-METHYL-1-PENTENE)HOLLOW FIBER MEMBRANES 被引量:2
7
作者 徐志康 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第3期369-372,共4页
Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of t... Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of themembranes with special asymmetric structure. The preliminary results of gas permeation measurements indicated that the resultant hollow fiber membranes have the potential ability for oxygen/nitrogen separation. 展开更多
关键词 Poly(4-methyl-1-pentene) Asymmetric membranes Hollow fiber membrane gas permeation O_2/N_2 separation
下载PDF
Controlling pore structures of Pd-doped organosilica membranes by calcination atmosphere for gas separation 被引量:1
8
作者 YibinWei Hengfei Zhang +2 位作者 Jiaojiao Lei Huating Song Hong Qi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第12期3036-3042,共7页
Pd-doped organosilica membranes were prepared by controlling calcination atmospheres(i.e.POS-Air,POS-N2,POS-H2,POS-H2/N2)to tailor their networks for improving their gas separation performance.This study shows that Pd... Pd-doped organosilica membranes were prepared by controlling calcination atmospheres(i.e.POS-Air,POS-N2,POS-H2,POS-H2/N2)to tailor their networks for improving their gas separation performance.This study shows that Pd(Ⅱ)could be only maintained under non-reductive calcination atmosphere,while inert and reducing calcination atmosphere is more beneficial to maintain organosilica moieties in POS networks.POS-H2/N2 membrane showed the optimal H2 separation performance that its permselectivities for H2/CO2,H2/N2,H2/CH4 and H2/SF6 are 15.0,96.7,173.0 and 3400.0,re spectively.Moreover,it is found that H2 molecules pass through the four membranes based on activated diffusion,while CO2 molecules permeation through POS-N2 and POS-Air membrane is dominated by surface diffusion.This work may provide insight into the understanding of the calcination atmosphere effect on gas separation performance of metal-doped organosilica membranes. 展开更多
关键词 PD DOPING ORGANOSILICA membrane CALCINATION ATMOSPHERE gas separation
下载PDF
A hybrid zeolitic imidazolate framework Co-IM-mIM membrane for gas separation 被引量:2
9
作者 高正才 李立清 +3 位作者 李海龙 陈若菲 WANG S 王阳刚 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1727-1735,共9页
A zeolitic imidazolate hybrid membrane(Co-IM-mIM) containing two imidazolate ligands deposited on a macroporous α-alumina support was prepared by pre-depositing and secondary growth technique. XRD, TGA and SEM charac... A zeolitic imidazolate hybrid membrane(Co-IM-mIM) containing two imidazolate ligands deposited on a macroporous α-alumina support was prepared by pre-depositing and secondary growth technique. XRD, TGA and SEM characterizations demonstrate that a stable and thin, but dense and pure-phase Co-IM-mIM membrane can be obtained on the macroporous-alumina discs in Teflon-lined autoclave at 120 °C after pre-depositing by dip-coating at room temperature. No visible cracks, pinholes or other defects were observed on the membrane layer. The gas separation studies of Co-IM-mIM membrane were carried out at 25 °C and 1×10~5 Pa, showing ideal selectivity of 6.95, 5.25, 3.40 for H_2/CO_2, H_2/N_2 and H_2/CH_4, respectively, and a permeance of 17.37× 10^(-6) mol/(m^2·s·Pa) for H_2. The influence of temperature and trans-membrane pressure on hydrogen separation and permeation was also carried out. The gas permeation and selectivity demonstrate that this membrane may have potential applications for efficient H_2 separation. 展开更多
关键词 Co-IM-mIM membrane secondary growth gas permeation separation
下载PDF
Conjugated microporous polymer membranes for chemical separations
10
作者 Zongyao Zhou Zhen Li +1 位作者 Lubna M.Rehman Zhiping Lai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第5期1-14,共14页
Conjugated microporous polymers(CMPs) are a unique class of porous organic materials, which are constructed with π-conjugation structures leading to intrinsic micropores. The CMPs properties such as high surface area... Conjugated microporous polymers(CMPs) are a unique class of porous organic materials, which are constructed with π-conjugation structures leading to intrinsic micropores. The CMPs properties such as high surface area, intrinsic and rich micropores, interlocking and rigid structure, extensive π-conjugation and tunable band-gap, chemical and thermal stability, together with tailored functionalities, contribute to its abundant potential for application in fields such as photocatalysis, optoelectronics, energy storage, and chemical sensors. Recently, CMPs have gained importance in the field of membranes for chemical separation. In this review, we briefly discuss the historical development of CMPs, followed by a detailed description of the progress in state-of-the-art design, preparation, and application of CMPs in membranes. Additionally, we provide inference on the future prospects of CMPs as membranes. 展开更多
关键词 Conjugated microporous polymer membrane separation ELECTROpolymerIZATION FILM
下载PDF
Economic Comparison of Three Gas Separation Technologies for CO2 Capture from Power Plant Flue Gas 被引量:8
11
作者 YANG Hongjun FAN Shuanshi LANG Xuemei WANG Yanhong NIE Jianghua 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第4期615-620,共6页
Three gas separation technologies,chemical absorption,membrane separation and pressure swing adsorption,are usually applied for CO2 capture from flue gas in coal-fired power plants.In this work,the costs of the three ... Three gas separation technologies,chemical absorption,membrane separation and pressure swing adsorption,are usually applied for CO2 capture from flue gas in coal-fired power plants.In this work,the costs of the three technologies are analyzed and compared.The cost for chemical absorption is mainly from $30 to $60 per ton(based on CO2 avoided),while the minimum value is $10 per ton(based on CO2 avoided).As for membrane separation and pressure swing adsorption,the costs are $50 to $78 and $40 to $63 per ton(based on CO2 avoided),respectively.Measures are proposed to reduce the cost of the three technologies.For CO2 capture and storage process,the CO2 recovery and purity should be greater than 90%.Based on the cost,recovery,and purity,it seems that chemical absorption is currently the most cost-effective technology for CO2 capture from flue gas from power plants.However,membrane gas separation is the most promising alternative approach in the future,provided that membrane performance is further improved. 展开更多
关键词 CO2 capture cost flue gas chemical absorption membrane gas separation pressure swing adsorption
下载PDF
Evaluation of a mathematical model using experimental data and artificial neural network for prediction of gas separation 被引量:1
12
作者 M.Peer M.Mahdyarfar T.Mohammadi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第2期135-141,共7页
In recent times, membranes have found wide applications in gas separation processes. As most of the industrial membrane separation units use hollow fiber modules, having a proper model for simulating this type of memb... In recent times, membranes have found wide applications in gas separation processes. As most of the industrial membrane separation units use hollow fiber modules, having a proper model for simulating this type of membrane module is very useful in achieving guidelines for design and characterization of membrane separation units. In this study, a model based on Coker, Freeman, and Fleming's study was used for estimating the required membrane area. This model could simulate a multicomponent gas mixture separation by solving the governing differential mass balance equations with numerical methods. Results of the model were validated using some binary and multicomponent experimental data from the literature. Also, the artificial neural network (ANN) technique was applied to predict membrane gas separation behavior and the results of the ANN simulation were compared with the simulation results of the model and the experimental data. Good consistency between these results shows that ANN method can be successfully used for prediction of the separation behavior after suitable training of the network 展开更多
关键词 hollow fiber membrane gas separation mathematical modeling artificial neural network
下载PDF
GAS SEPARATION PROPERTIES OF FREESTANDING FILM OF POLYANILINE
13
作者 杨季平 孙求实 +1 位作者 后晓淮 万梅香 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1993年第2期121-124,共4页
The gas separation properties of free- standing film of polyaniline (PANI) for gas pairs of He/N2, H_2/N_2. CO_2/N_2 and CO_2/CH_4 at room temperature were measured as a function of the protonation state. Variation of... The gas separation properties of free- standing film of polyaniline (PANI) for gas pairs of He/N2, H_2/N_2. CO_2/N_2 and CO_2/CH_4 at room temperature were measured as a function of the protonation state. Variation of the gas permeabilities coefficient of PANI with an insulator to metal transition upon the protonation processes was observed, which might be due to a change in both gas solubility coefficient and diffusion coefficient with the protonation state. 展开更多
关键词 POLYANILINE gas separation membrane gas permeability separation factor
下载PDF
High-performance and robust high-temperature polymer electrolyte membranes with moderate microphase separation by implementation of terphenyl-based polymers
14
作者 Jinyuan Li Congrong Yang +3 位作者 Haojiang Lin Jicai Huang Suli Wang Gongquan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期572-578,共7页
Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(te... Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs. 展开更多
关键词 Fuel cell High-temperature polymer electrolyte membranes Microphase separation Poly(terphenyl piperidinium)s Phosphoric acid
下载PDF
Highly Durable MIL-96 Membranes via a One-step Active γ-Alumina Conversion Strategy for Gas Separation
15
作者 GAO Zhuangzhuang LI Baoju +4 位作者 OU Shuxian LI Dongsheng FANG Qianrong QIU Shilun XUE Ming 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2023年第6期1084-1091,共8页
Metal-organic frameworks(MOFs)are attractive in membrane separation due to their special pore structure and suitable aperture size.The fabrication of defect-free and robust MOF membranes with excellent durability is h... Metal-organic frameworks(MOFs)are attractive in membrane separation due to their special pore structure and suitable aperture size.The fabrication of defect-free and robust MOF membranes with excellent durability is highly demanded but remains challenging.In this work,we report a one-step activeγ-alumina conversion strategy for the facile and reliable fabrication of an MIL-96 membrane.In this case,theγ-Al_(2)O_(3) sol was dip-coated and sintered on theα-Al_(2)O_(3) disc as the active aluminum source and substrate for the nucleation and growth of MOF.A continuous and well-intergrown MIL-96 membrane was generated with exceptional stability due to the strong adhesion to the substrate.The resultant MIL-96 membrane yielded a satisfactory H_(2)/CO_(2) permselectivity and high-temperature resistance,delivering a selectivity of 12.35 with H_(2) permeance of 6.20×10^(−7) mol·m^(−2)·s^(−1)·Pa^(−1) at 150℃.Moreover,the probe membrane presented remarkable durability and recyclability under harsh hydrothermal conditions.This method paves the way for constructing highly stable and selective MOF membranes and could accelerate the development of advanced membrane separation technologies for gas purification and recycling in addressing the severe energy and environmental problems. 展开更多
关键词 Metal-organic framework membrane Activeγ-alumina gas separation Hydrothermal stability
原文传递
Ultrapermeable membranes based on connected cluster of hollow polydimethylsiloxane nanoparticles for gas separation
16
作者 Xiaoli Ding Fangfang Tan +2 位作者 Hongyong Zhao Qingping Xin Yuzhong Zhang 《Particuology》 SCIE EI CAS CSCD 2023年第8期45-53,共9页
Mixed matrix membranes(MMMs)with the performance between the matrix and the filler is a promising strategy for membranes with excellent gas permeability-selectivity.In this study,the hollow polydimethylsiloxane nanopa... Mixed matrix membranes(MMMs)with the performance between the matrix and the filler is a promising strategy for membranes with excellent gas permeability-selectivity.In this study,the hollow polydimethylsiloxane nanoparticles were synthesized and then incorporated with the poly(oxide ethylene)monomer and tri-functional cross-linker to form mixed matrix membranes by in situ poly-merization.The hollow nanoparticles formed the independent closed nanocavities in membranes,which enhanced the gas permeability contributed by both the improved diffusivity and solubility.At high loading,the hollow polydimethylsiloxane nanoparticle was converted into the continuous phase with the cross-linked poly(oxide ethylene)as the dispersed phase.Gases preferred to permeate through the connected cluster of hollow polydimethylsiloxane nanoparticles,finally leading to ultrahigh gas per-meabilities far going beyond the instinct values of polydimethylsiloxane and the cross-linked poly(oxide ethylene).The optimized membrane with 34 wt%hollow nanoparticles loadings exhibited ultrahigh permeabilities with the values of 44186 Barrer for CO_(2) and 11506 Barrer for O_(2),accompanied with a CO_(2)/N_(2) selectivity of 9.9 and an O_(2)/N_(2) selectivity of 2.6,which exceeded the 2008 Robeson upper bound for O_(2)/N_(2) and located at the 2008 Robeson upper bound for CO_(2)/N_(2). 展开更多
关键词 Hollow nanoparticles Polydimethylsiloxane nanoparticles Mixed matrix membranes NANOCAVITY gas separation
原文传递
Polymeric Membranes Used in Natural Gas Processing to Separate Carbon Dioxide: the Facing Problems and Solutions
17
作者 Inamullah Bhatti Khairol Sozana Nor Kamarudin +1 位作者 Khadija Qureshi A. K. Ansari 《Journal of Environmental Science and Engineering》 2010年第1期25-33,共9页
For the last two decades polymeric membranes have been used in several gas separation processes. For the high selectivity and permeability various types of membranes have been developed. Thin layers to high dense and ... For the last two decades polymeric membranes have been used in several gas separation processes. For the high selectivity and permeability various types of membranes have been developed. Thin layers to high dense and hollow fiber to asymmetric wounded materials to determine the effective separation of CO2 from CH4 were used. Ideal membrane materials must have provisions of durability, chemical and thermal resistance, effective separation and economical production and operation. In this review it is observed that most of the polymeric materials face plasticization problem in the separation of CO2 from CH4. This is due to the condensable nature of carbon dioxide that causes swelling in most of the polymeric membranes due to which the efficiency of selectivity and permeability is affected. Most extensive works have been carried out in developing the chemical structure and compositions of polymeric materials to improve the separation properties. Cross-linking and blending of molecular sieving called "mixed-matrix" are the most useful approaches applied in this regard, but no where it is found to be fully effective and ideal polymeric membranes commercially fit to replace the existing systems of CO2 separation from the natural gas. Still area is open to work on to produce more worth full materials and switch towards liquid membranes and hybrid systems. 展开更多
关键词 Carbon dioxide gas separation natural gas polymer membranes.
下载PDF
Gas separation using porous cement membrane 被引量:2
18
作者 Weiqi Zhang Maria Gaggl +1 位作者 Gregor J.G.Gluth Frank Behrendt 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第1期140-146,共7页
Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subjec... Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied. 展开更多
关键词 gas separation porous membrane clean fuel cement membrane inorganic membranes
原文传递
Design of metal-organic framework membranes towards ultimate gas separation 被引量:1
19
作者 Yanwei Sun Yi Liu 《Green Chemical Engineering》 2021年第1期14-16,共3页
Metal-organic framework(MOF)membranes have shown unprecedented opportunities for energy efficient separation of diverse industrially important gas pairs(e.g.H_(2)/CO_(2),CO_(2)/N_(2),CO_(2)/CH_(4),and C3H6/C3H8).Among... Metal-organic framework(MOF)membranes have shown unprecedented opportunities for energy efficient separation of diverse industrially important gas pairs(e.g.H_(2)/CO_(2),CO_(2)/N_(2),CO_(2)/CH_(4),and C3H6/C3H8).Among the various factors,microstructure manipulation(including thickness,orientation,and grain boundary structure)and framework tuning(including pore size,framework rigidity/flexibility,and stimuli responsiveness)of MOF membranes have been found playing dominant roles in their separation performances.In this perspective,we highlighted some recent progress in polycrystalline MOF membranes with emphasis on the elucidation of the structure-performance relationship at different scales. 展开更多
关键词 Metal organic frameworks gas separation membranes MICROSTRUCTURE ORIENTATION
原文传递
Rapid formation of metal-monophenolic networks on polymer membranes for oil/water separation and dye adsorption
20
作者 Jia-Lu Shen Bing-Pan Zhang +2 位作者 Di Zhou Zhi-Kang Xu Ling-Shu Wan 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3852-3856,共5页
Surface deposition based on metal-phenolic networks(MPNs) has received increasing interest in recent years. The catechol structure is generally considered to be essential to the formation of MPNs. Our most recent resu... Surface deposition based on metal-phenolic networks(MPNs) has received increasing interest in recent years. The catechol structure is generally considered to be essential to the formation of MPNs. Our most recent results have demonstrated that some kinds of monophenols can form MPNs on substrate surfaces.Herein, we report a fast and effective surface-coating system based on the coordination of 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid, a kind of monophenol, with Fe^(3+). Compared with other metal ions such as Cu^(2+)and Ni^(2+), Fe^(3+)with stronger electron acceptability can coordinate with the monophenol more strongly to form MPNs, and moreover, the deposition time significantly decreases to 40 min from generally 24 h. It is demonstrated that the deposition process is controlled by the coordination, Fe^(3+)hydrolysis, and deprotonation of the monophenol. The coatings endow substrates such as polypropylene microfiltration membrane with underwater superoleophobicity, which can be applied in oil/water separation with high separation efficiency and great long-term stability. In addition, the coated membranes are positively charged and thus are useful in selective adsorption of dyes. The present work not only provides a novel, fast, and one-step deposition method to fabricate MPNs, but also demonstrates that the fabrication efficiency of monophenol-based MPNs is comparable with that of polyphenol-based MPNs. 展开更多
关键词 Metal-phenolic networks polymer membrane Surface coating Oil/water separation Dye adsorption
原文传递
上一页 1 2 14 下一页 到第
使用帮助 返回顶部