Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand t...Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand to tune the selectivity of propane oxidative dehydrogenation. Beneficial from the weakened affinity of propene, NiO modified with polymeric phosphate shows a selectivity 2–3 times higher than NiO towards the production of propene. The success of this regulation verifies the feasibility of ligand modification in high-temperature gas-phase reactions and shines a light on its applications in other important industrial reactions.展开更多
A polymeric hydroxyl ferric phosphate(PHFP)was prepared by using a byproduct of titanium dioxide containing ferrous sulfate and phosphates under alkaline condition.The PHFP was used to immobilize lead(Pb)and cadmium(C...A polymeric hydroxyl ferric phosphate(PHFP)was prepared by using a byproduct of titanium dioxide containing ferrous sulfate and phosphates under alkaline condition.The PHFP was used to immobilize lead(Pb)and cadmium(Cd)in soils.Fourier transform infrared spectra,X-ray diffraction were applied to revealing the characteristics of PHFP,and the modified Tessier sequential extraction and column leaching experiment with simulated acid rain were used to assess the effectiveness of immobilization of Cd and Pb in soils by PHFP.The results showed that PHFP was indeed a polymer with complicated OH-Fe-P structure and consisted of Fe6(OH)5(H2O)4(PO4)4(H2O)2and Fe25(PO4)14(OH)24.Moreover,the removal rates of DTPA-extractable Cd and Pb in soils reached up to33%and45%,and the water-soluble Cd and Pb decreased by56%and58%,respectively,when PHFP was added in soils at4%dosage.In addition,the immobilization of Cd and Pb contributed to transforming water soluble,exchangeable and carbonate-bonded fractions to Fe and Mn oxides-bonded,organic-bonded and residual fractions.Under leaching with simulated acid rain,Cd and Pb release amount in PHFP amended soil declined by53%and52%,respectively,as compared with non-treated soil.The result implied that PHFP had a potential application for the remediation of Cd-and Pb-contaminated soils.展开更多
基金was supported by the National Natural Science Foundation of China(91545113,21703050)the China Postdoctoral Science Foundation(2017M610363,2018T110584)+2 种基金Shell Global Solutions International B.V.(PT71423,PT74557)the Fok Ying Tong Education Foundation(131015)the Science&Technology Program of Ningbo(2017C50014)~~
文摘Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand to tune the selectivity of propane oxidative dehydrogenation. Beneficial from the weakened affinity of propene, NiO modified with polymeric phosphate shows a selectivity 2–3 times higher than NiO towards the production of propene. The success of this regulation verifies the feasibility of ligand modification in high-temperature gas-phase reactions and shines a light on its applications in other important industrial reactions.
基金Project(2012GS430203)supported by Science and Technology Program for Public Wellbeing,ChinaProject(51504299)supported by the National Natural Science Foundation of ChinaProject(2015WK3016)supported by Science and Technology Program of Hunan Province,China
文摘A polymeric hydroxyl ferric phosphate(PHFP)was prepared by using a byproduct of titanium dioxide containing ferrous sulfate and phosphates under alkaline condition.The PHFP was used to immobilize lead(Pb)and cadmium(Cd)in soils.Fourier transform infrared spectra,X-ray diffraction were applied to revealing the characteristics of PHFP,and the modified Tessier sequential extraction and column leaching experiment with simulated acid rain were used to assess the effectiveness of immobilization of Cd and Pb in soils by PHFP.The results showed that PHFP was indeed a polymer with complicated OH-Fe-P structure and consisted of Fe6(OH)5(H2O)4(PO4)4(H2O)2and Fe25(PO4)14(OH)24.Moreover,the removal rates of DTPA-extractable Cd and Pb in soils reached up to33%and45%,and the water-soluble Cd and Pb decreased by56%and58%,respectively,when PHFP was added in soils at4%dosage.In addition,the immobilization of Cd and Pb contributed to transforming water soluble,exchangeable and carbonate-bonded fractions to Fe and Mn oxides-bonded,organic-bonded and residual fractions.Under leaching with simulated acid rain,Cd and Pb release amount in PHFP amended soil declined by53%and52%,respectively,as compared with non-treated soil.The result implied that PHFP had a potential application for the remediation of Cd-and Pb-contaminated soils.