The preparation of sterically stabilized poly(3, 4-ethylenedioxythiophene)(PEDOT) colloidal dispersions doped with different sulfonic acids is described. Three different sulfonic acids, i.e., p-toluenesulfonic aci...The preparation of sterically stabilized poly(3, 4-ethylenedioxythiophene)(PEDOT) colloidal dispersions doped with different sulfonic acids is described. Three different sulfonic acids, i.e., p-toluenesulfonic acid, β-naphthalenesulfonic acid and D-camphor-10-sulfonic acid are used, facilitating the preparation of sterically stable PEDOT colloidal particles. The influences of the dopants and concentration of polymeric stabilizer on the yields, morphologies and electrical properties of the resultant colloidal particles were investigated. The colloidal particles with the size ranging from 172 to 334 nm have been obtained in good yields. The compressed pellet conductivity was as high as 4.5 Scm^-1展开更多
The performance and morphology stability of polymer bulk heterojunetion solar cells based on poly(3-hexylthiophene) (P3HT) as the donor and indene-C6o bisadduct (ICBA) or methanofullerene [6,6]-phenyl C61-butyri...The performance and morphology stability of polymer bulk heterojunetion solar cells based on poly(3-hexylthiophene) (P3HT) as the donor and indene-C6o bisadduct (ICBA) or methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as the aeceptor are compared. Effect of the different donor and aeeeptor weight ratios on photo- voltaic performance of the P3HT:ICBA device is studied. The optimal device achieved power conversion emeiency of 5.51~o with dso of l0.86mA/cm2, Voc of 0.83 V, and fill factor (FF) of 61.1 % under AM 1.5G (lOOmW/cm2) simulated solar illumination. However, the stability measurement shows that cells based on P3HT:ICBA are less stable than those of the device based on P3HT:PCBM. Atomic force microscope results reveal that the morphol- ogy of the P3HT:ICBA film changed considerably during the storage periods due to unstable interpenetrating D-A network. This observation can be explained by the fact that there is lack of intermolecular hydrogen bonds in the P3HT:ICBA system. However, in the P3HT:PCBM system the molecules in the blend film are firmly held together in the solid state by means of intermoleeular hydrogen bonds originating from C-H. ~. Os bonds (where Os comes from the singly-bonded 0 atom of PCBM), forming a stable three-dimensional network. The measured PL decay lifetimes for P3HT:PCBM and P3HT:ICBA systems are 33.66 ns and 35.34 ns, respectively, indicating that the P3HT:ICBA system has a less efficient exciton separation eftleiency than that of P3HT:PCBM, which may result in the interracial photogenerated charges accumulated on the D: A interface. Such progressive phase segregation between P3HT and ICBA eventually leads to the degradation in performance and deteriorates the stability of the device. We also present an approach to enhance the stability of P3HT:ICBA systems by adding PCBM as the second acceptor. Our results show that by carefully tuning the contents of PCBM as the second acceptor, more stable polymer solar cells can be obtained.展开更多
Polymer stabilizers are widely used to synthesize gold nanoparticles(Au NPs)to prevent their aggregation and improve their stability.Although stabilizers are known to greatly influence both the structure and size of A...Polymer stabilizers are widely used to synthesize gold nanoparticles(Au NPs)to prevent their aggregation and improve their stability.Although stabilizers are known to greatly influence both the structure and size of Au NPs,limited efforts explore their effects on the activity of Au NPs for biocatalysis.Herein,different polymers are used as stabilizers to synthesize Au NPs.For the glucose oxidase-like activity,we find that without the spatial barrier from stabilizers,naked Au NPs show significantly high catalytic activity as well as the worst stability.Among the polymers,polyacrylic acid-stabilized Au NPs exhibit the highest activity,whose Vmax(0.74μM·s^(−1))is higher than that of the natural glucose oxidase(0.37μM·s^(−1))due to the smallest particle size(<2 nm)and the weak spatial resistance of polyacrylic acid.These variable catalytic results derive from the comprehensive effects including size,steric hindrance,and electronic effect.However,further selectivity and activity tests have exposed shortcomings.They possess universal activities for aldose oxidation,whereas cannot retain activities in typical physiological environments.Our findings highlight the role of polymer stabilizers in imposing effects on the glucose oxidase-like activity of Au NPs and provide a basis for further Au NPs engineering and applications.展开更多
A(polymer network/liquid crystal/chiral dopants) composite exhibiting a temperature-sensing switch of infrared spectrum has been developed.Because of the different change of the chiral dopant in the helical twisting p...A(polymer network/liquid crystal/chiral dopants) composite exhibiting a temperature-sensing switch of infrared spectrum has been developed.Because of the different change of the chiral dopant in the helical twisting power and the anchoring effect of the polymer network,the polymer stabilized liquid crystal(PSLC) films,of which the bandwidth of the selective reflection spectra increased with changing temperature,were obtained.展开更多
A series of tests were carried out on sulfate rich, high-plasticity clay and poorly-graded natural sand to study the effectiveness of a methylene diphenyl diisocyanate based liquid polymer soil stabilizer in improving...A series of tests were carried out on sulfate rich, high-plasticity clay and poorly-graded natural sand to study the effectiveness of a methylene diphenyl diisocyanate based liquid polymer soil stabilizer in improving the unconfined compressive strength (UCS) of freshly stabilized soils and aged sand specimens. The aged specimens were prepared by exposing the specimens to ultraviolet radiation, freeze-thaw, and wet-dry weathering. The polymer soil stabilizer also mitigated the swelling of the expansive clay. For clay, the observations indicated that the sequence of adding water and liquid polymer had great influence on the gained UGS of stabilized specimens. However, this was shown to be of little importance for sand. Furthermore, sand samples showed incremental gains in UCS when they were submerged in water. This increase was significant for up to 4 days of soaking in water after 4 days of ambient air curing. Conversely, the clay samples lost a large fraction of their UCS when soaked in water; however, their remaining strength was still considerable. The stabilized specimens showed acceptable endurance under weathering action, although sample yellowing due to ultraviolet radiation was evident on the surface of the specimens. Except for moisture susceptibility of the clay specimens, the results of this study suggested the liquid stabilizer could be successfully utilized to provide acceptable strength, durability and mitigated swelling.展开更多
Based on the study of a new type of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT),we focussed on the preparation and characteristics of PEDOT nanoparticles made by reversed micelle method.Moreover,w...Based on the study of a new type of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT),we focussed on the preparation and characteristics of PEDOT nanoparticles made by reversed micelle method.Moreover,we deeply investigated the optical,electrical and the thermal stability of PEDOT nanoparticles.The main results are as follows: the small-sized PEDOT nanoparticles were prepared and utilized by different methods,such as ultraviolet/visible (UV-Vis) spectroscopy,Fourier-transform infrared (FT- IR) spectrum,scanning electron microscopy(SEM) and so on.The results show that the amount of oxidizer,ultrasonic treatment,polymerizing temperature and doping degree can influent morphology,electrical ability and gas sensitivity of PEDOT nanoparticles.The Bragg peaks of nanoparticles at 6.7°,12.7°,25° were observed by XRD and the better orientation of molecular chain was attributed to the effective doping of toluene-p-sulfonic acid,which also resulted in an enhancement of thermal stability of nanoparticles than conventional PEDOT.展开更多
Miniemulsion stabilized by poly(2-(dimethylamino) ethyl methacrylate)-block-poly(butyl methylacrylate)(PDMAEMA-b-PBMA) diblock copolymers has been used as liquid templates for the synthesis of polymer nanocaps...Miniemulsion stabilized by poly(2-(dimethylamino) ethyl methacrylate)-block-poly(butyl methylacrylate)(PDMAEMA-b-PBMA) diblock copolymers has been used as liquid templates for the synthesis of polymer nanocapsules via quaternization cross-linking of PDMAEMA segments of the copolymer by 1,2-bis(2-iodoethoxy)ethane(BIEE) crosslinkers. PDMAEMA-b-PBMAs here as a stabilizer in miniemulsion with different molecular weights led to a size variation in diameters of nanocapsules, demonstrating the capsules have potential design capability of this technique. The solution behavior of the capsules has been also investigated in this paper.展开更多
Application of flame retardants is limited because of environmental requirements. This work introduces conventional magnetic nanoparticles as a new class of nontoxic and effective flame retardant. Fe3O4 enhanced both ...Application of flame retardants is limited because of environmental requirements. This work introduces conventional magnetic nanoparticles as a new class of nontoxic and effective flame retardant. Fe3O4 enhanced both the thermal stability and flame retardant properties of a poly(vinyl alcohol) matrix. Nanoparticles were synthesized via a simple precipitation reaction without using an inert atmosphere at room temperature. The effects of different precursors and acrylamide on the morphology of the products were investigated. Nanoparticles exhibited a ferrimagnetic behavior at room temperature. To prepare the magnetic nanocomposite, Fe3O4 nanoparticles were added to the poly(vinyl alcohol). In the presence of a flame, the magnetic nanoparticles remained together, showed resistance to dripping and protected the polymer matrix. Dispersed nanoparticles play a role of a magnetic barrier layer, which slows product volatilization and prevents flames and oxygen from reaching the sample during decomposition of the polymer.展开更多
文摘The preparation of sterically stabilized poly(3, 4-ethylenedioxythiophene)(PEDOT) colloidal dispersions doped with different sulfonic acids is described. Three different sulfonic acids, i.e., p-toluenesulfonic acid, β-naphthalenesulfonic acid and D-camphor-10-sulfonic acid are used, facilitating the preparation of sterically stable PEDOT colloidal particles. The influences of the dopants and concentration of polymeric stabilizer on the yields, morphologies and electrical properties of the resultant colloidal particles were investigated. The colloidal particles with the size ranging from 172 to 334 nm have been obtained in good yields. The compressed pellet conductivity was as high as 4.5 Scm^-1
基金Supported by the Tianjin Natural Science Foundation under Grant Nos 13JCYBJC18900 and 13JCZDJC26700the National High Technology Research and Development Program of China under Grant No 2013AA014201
文摘The performance and morphology stability of polymer bulk heterojunetion solar cells based on poly(3-hexylthiophene) (P3HT) as the donor and indene-C6o bisadduct (ICBA) or methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as the aeceptor are compared. Effect of the different donor and aeeeptor weight ratios on photo- voltaic performance of the P3HT:ICBA device is studied. The optimal device achieved power conversion emeiency of 5.51~o with dso of l0.86mA/cm2, Voc of 0.83 V, and fill factor (FF) of 61.1 % under AM 1.5G (lOOmW/cm2) simulated solar illumination. However, the stability measurement shows that cells based on P3HT:ICBA are less stable than those of the device based on P3HT:PCBM. Atomic force microscope results reveal that the morphol- ogy of the P3HT:ICBA film changed considerably during the storage periods due to unstable interpenetrating D-A network. This observation can be explained by the fact that there is lack of intermolecular hydrogen bonds in the P3HT:ICBA system. However, in the P3HT:PCBM system the molecules in the blend film are firmly held together in the solid state by means of intermoleeular hydrogen bonds originating from C-H. ~. Os bonds (where Os comes from the singly-bonded 0 atom of PCBM), forming a stable three-dimensional network. The measured PL decay lifetimes for P3HT:PCBM and P3HT:ICBA systems are 33.66 ns and 35.34 ns, respectively, indicating that the P3HT:ICBA system has a less efficient exciton separation eftleiency than that of P3HT:PCBM, which may result in the interracial photogenerated charges accumulated on the D: A interface. Such progressive phase segregation between P3HT and ICBA eventually leads to the degradation in performance and deteriorates the stability of the device. We also present an approach to enhance the stability of P3HT:ICBA systems by adding PCBM as the second acceptor. Our results show that by carefully tuning the contents of PCBM as the second acceptor, more stable polymer solar cells can be obtained.
基金S.J.D.acknowledges the financial support of the National Natural Science Foundation of China(Nos.22074137 and 21721003)Y.X.F.acknowledges the financial support of the National Natural Science Foundation of China(No.22274149)+1 种基金L.L.acknowledges the financial support of High Technology Industrialization Special of Science and Technology Cooperation of Jilin Province and the Chinese Academy of Sciences(No.2021SYHZ0036)Jilin Province Key R&D Program of China(No.20200403002SF).
文摘Polymer stabilizers are widely used to synthesize gold nanoparticles(Au NPs)to prevent their aggregation and improve their stability.Although stabilizers are known to greatly influence both the structure and size of Au NPs,limited efforts explore their effects on the activity of Au NPs for biocatalysis.Herein,different polymers are used as stabilizers to synthesize Au NPs.For the glucose oxidase-like activity,we find that without the spatial barrier from stabilizers,naked Au NPs show significantly high catalytic activity as well as the worst stability.Among the polymers,polyacrylic acid-stabilized Au NPs exhibit the highest activity,whose Vmax(0.74μM·s^(−1))is higher than that of the natural glucose oxidase(0.37μM·s^(−1))due to the smallest particle size(<2 nm)and the weak spatial resistance of polyacrylic acid.These variable catalytic results derive from the comprehensive effects including size,steric hindrance,and electronic effect.However,further selectivity and activity tests have exposed shortcomings.They possess universal activities for aldose oxidation,whereas cannot retain activities in typical physiological environments.Our findings highlight the role of polymer stabilizers in imposing effects on the glucose oxidase-like activity of Au NPs and provide a basis for further Au NPs engineering and applications.
基金support from National Natural Science foundation (No.20674005)Major project of Ministry Education of the People's Republic of China(No.104187)Doctoral Fund of Ministry of Education of the People's Republic of China(No.20050425850)
文摘A(polymer network/liquid crystal/chiral dopants) composite exhibiting a temperature-sensing switch of infrared spectrum has been developed.Because of the different change of the chiral dopant in the helical twisting power and the anchoring effect of the polymer network,the polymer stabilized liquid crystal(PSLC) films,of which the bandwidth of the selective reflection spectra increased with changing temperature,were obtained.
基金Alchemy Polymers Company,LLC for their financial support
文摘A series of tests were carried out on sulfate rich, high-plasticity clay and poorly-graded natural sand to study the effectiveness of a methylene diphenyl diisocyanate based liquid polymer soil stabilizer in improving the unconfined compressive strength (UCS) of freshly stabilized soils and aged sand specimens. The aged specimens were prepared by exposing the specimens to ultraviolet radiation, freeze-thaw, and wet-dry weathering. The polymer soil stabilizer also mitigated the swelling of the expansive clay. For clay, the observations indicated that the sequence of adding water and liquid polymer had great influence on the gained UGS of stabilized specimens. However, this was shown to be of little importance for sand. Furthermore, sand samples showed incremental gains in UCS when they were submerged in water. This increase was significant for up to 4 days of soaking in water after 4 days of ambient air curing. Conversely, the clay samples lost a large fraction of their UCS when soaked in water; however, their remaining strength was still considerable. The stabilized specimens showed acceptable endurance under weathering action, although sample yellowing due to ultraviolet radiation was evident on the surface of the specimens. Except for moisture susceptibility of the clay specimens, the results of this study suggested the liquid stabilizer could be successfully utilized to provide acceptable strength, durability and mitigated swelling.
基金Funded by the National Natural Science Foundation of China (No. 60372002)
文摘Based on the study of a new type of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT),we focussed on the preparation and characteristics of PEDOT nanoparticles made by reversed micelle method.Moreover,we deeply investigated the optical,electrical and the thermal stability of PEDOT nanoparticles.The main results are as follows: the small-sized PEDOT nanoparticles were prepared and utilized by different methods,such as ultraviolet/visible (UV-Vis) spectroscopy,Fourier-transform infrared (FT- IR) spectrum,scanning electron microscopy(SEM) and so on.The results show that the amount of oxidizer,ultrasonic treatment,polymerizing temperature and doping degree can influent morphology,electrical ability and gas sensitivity of PEDOT nanoparticles.The Bragg peaks of nanoparticles at 6.7°,12.7°,25° were observed by XRD and the better orientation of molecular chain was attributed to the effective doping of toluene-p-sulfonic acid,which also resulted in an enhancement of thermal stability of nanoparticles than conventional PEDOT.
基金supported by the National Natural Science Foundation of China(No.41402037)the Natural Science Foundation of Anhui Province Education Department(Nos.AQKJ2015B002 and KJ2014A141)
文摘Miniemulsion stabilized by poly(2-(dimethylamino) ethyl methacrylate)-block-poly(butyl methylacrylate)(PDMAEMA-b-PBMA) diblock copolymers has been used as liquid templates for the synthesis of polymer nanocapsules via quaternization cross-linking of PDMAEMA segments of the copolymer by 1,2-bis(2-iodoethoxy)ethane(BIEE) crosslinkers. PDMAEMA-b-PBMAs here as a stabilizer in miniemulsion with different molecular weights led to a size variation in diameters of nanocapsules, demonstrating the capsules have potential design capability of this technique. The solution behavior of the capsules has been also investigated in this paper.
文摘Application of flame retardants is limited because of environmental requirements. This work introduces conventional magnetic nanoparticles as a new class of nontoxic and effective flame retardant. Fe3O4 enhanced both the thermal stability and flame retardant properties of a poly(vinyl alcohol) matrix. Nanoparticles were synthesized via a simple precipitation reaction without using an inert atmosphere at room temperature. The effects of different precursors and acrylamide on the morphology of the products were investigated. Nanoparticles exhibited a ferrimagnetic behavior at room temperature. To prepare the magnetic nanocomposite, Fe3O4 nanoparticles were added to the poly(vinyl alcohol). In the presence of a flame, the magnetic nanoparticles remained together, showed resistance to dripping and protected the polymer matrix. Dispersed nanoparticles play a role of a magnetic barrier layer, which slows product volatilization and prevents flames and oxygen from reaching the sample during decomposition of the polymer.