The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed. The change of the surface property over time, in comparison with low pressure...The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed. The change of the surface property over time, in comparison with low pressure oxygen (O2) plasma treatment, is examined. As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement. However, when the atmospheric pressure plasma was used for PP(polypropylene), it produced remarkable hydrophilic effects.展开更多
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib...This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.展开更多
A general, rapid and solvent-free approach is proposed to fabricate nanostructured polymer surfaces by coupling ultrasonic vi- bration and anodized aluminum oxide templating. With our approach, hollow nanorods or nano...A general, rapid and solvent-free approach is proposed to fabricate nanostructured polymer surfaces by coupling ultrasonic vi- bration and anodized aluminum oxide templating. With our approach, hollow nanorods or nanofibers with controlled diameter and length are prepared on polymer surfaces. The whole fabrication process is completed in ~30 s and equally applicable to polymers of different crystalline structures. The wettability of the as-fabricated polymer surfaces (being hydrophilic, hydro- phobic, highly hydrophobic or even superhydrophobic) is readily regulated by adjusting the welding time from 0 s to a maxi- mum of 10 s. Our approach can be a promising industrial basis for manufacturing functional nanomaterials in the fields of electronics, optics, sensors, biology, medicine, coating, or fluidic technologies.展开更多
Surface molecularly imprinted polymers (SMIPs) for selective adsorption of ampicillin sodium were synthesized using surface molecular imprinting technique with silica gel as a support. The physical and morphological...Surface molecularly imprinted polymers (SMIPs) for selective adsorption of ampicillin sodium were synthesized using surface molecular imprinting technique with silica gel as a support. The physical and morphological characteristics of the polymers were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), elemental analysis and nitrogen adsorption-desorption test. The obtained results showed that the SMIPs displayed great adsorption capacity (13.5 lag/mg), high recognition ability (the imprinted factor is 3.2) and good binding kinetics for ampicillin sodium. Finally, as solid phase extraction adsorbents, the SMIPs coupled with HPLC method were validated and applied for the enrichment, purification and determination of anapicillin sodium in real milk and blood samples. The averages of spiked accuracy ranged from 92.1% to 107.6%. The relative standard deviations of intra- and inter-day precisions were less than 4.6%. This study provides a new and promising method for enriching, extracting and determining ampicillin sodium in complex biological samples.展开更多
Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand t...Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand to tune the selectivity of propane oxidative dehydrogenation. Beneficial from the weakened affinity of propene, NiO modified with polymeric phosphate shows a selectivity 2–3 times higher than NiO towards the production of propene. The success of this regulation verifies the feasibility of ligand modification in high-temperature gas-phase reactions and shines a light on its applications in other important industrial reactions.展开更多
A new process for lamination of polymer films by 'bulk surface photografting' has been developed. The chemical component of the invention is that the curing of reactive solution between two substrates is initi...A new process for lamination of polymer films by 'bulk surface photografting' has been developed. The chemical component of the invention is that the curing of reactive solution between two substrates is initiated by the surface free radicals produced by aromatic ketones and surface-hydrogen of substrates. Using the new approach, two or more polymer films are bonded together by a grafted polymer network which is grafted to adjacent substrate surfaces. The technique has been applied to film substrates of different polymers such as polyolefins, polyesters, and polyamides which have abstractable hydrogens at the surface. The photolaminated film composites containing carrier films and an intermediate functional film of low permeability give strong laminates with high barrier properties, e.g, for oxygen and air.展开更多
The uniform surface ion-imprinted resins for Zn2+ as the imprinting guest were prepared by emulsifier-free emulsion polymerization utilizing ally phenyl hydrogenphosphate as a functional comonomer. The Zn2+-imprinted ...The uniform surface ion-imprinted resins for Zn2+ as the imprinting guest were prepared by emulsifier-free emulsion polymerization utilizing ally phenyl hydrogenphosphate as a functional comonomer. The Zn2+-imprinted resin adsorbed Zn2+ much more effectively than did the unimprinted one. The selective feature of the surface imprinted resins to the template ions was demonstrated.展开更多
The coordination polymerization of benzotriazole with metallic copper has been investigated by infrared and X-ray photoelectron spectroscopies. We found that benzotriazole could react with copper (0) under mild condit...The coordination polymerization of benzotriazole with metallic copper has been investigated by infrared and X-ray photoelectron spectroscopies. We found that benzotriazole could react with copper (0) under mild conditions to form bis (benzotriazolato) copper (Ⅱ) and benzotriazolato copper (Ⅰ)which covered the surface of copper metal in the shape of polymeric materials. Since benzotriazole is of great interest as a ligand in that its presence in many biological system with metal ions, and is considered as a corrosion inhibitor, this work will be in favour of the study of protective corrosion.展开更多
This paper reports the phase separation behavior of ABS films cast on the surfaces of homopelymers or random copolymers.It is found that phase separation of ABS films was induced by the surfaces of the substrate polym...This paper reports the phase separation behavior of ABS films cast on the surfaces of homopelymers or random copolymers.It is found that phase separation of ABS films was induced by the surfaces of the substrate polymers.The relationship between the miscibility of the sub- strate polymers and the phase separation behavior of ABS films was also examined.展开更多
This work aimed at investigating the feasibility of surface modification of cellulose nanocrystals (CNCs) using <em>in situ</em> ring opening polymerization of <em>ε</em>-caprolactone (<em&...This work aimed at investigating the feasibility of surface modification of cellulose nanocrystals (CNCs) using <em>in situ</em> ring opening polymerization of <em>ε</em>-caprolactone (<em>ε</em>-CL) at room temperature. Residues of flax and milkweed (<em>Asclepias syriaca</em>) stem fibers were used as a source of cellulose to obtain and isolate CNCs. The cationic ring opening polymerization (CROP) of the monomer <em>ε</em>-CL was used to covalently graft polycaprolactone (PCL) chains at the CNCs surface. Silver hexafluoroantimonate (AgSbF<sub>6</sub>) was used in combination with the extracted CNCs to initiate, at room temperature, the polymerization and the grafting reactions with no other stimulus. Fourier-Transform InfraRed (FTIR), X-ray Photoelectron Spectrometry (XPS), UV/visible absorption and Gel Permeation Chromatography (GPC) analyses evidenced the presence of PCL chains covalently grafted at CNCs surface, the formation of Ag(0) particles as well as low or moderate molecular weight free PCL chains.展开更多
Some proteins secreted by microorganisms have large molecular weights. We report here an approach to prepare coating by multilayer polymers for antifouling of proteins, especially the proteins with a large molecular w...Some proteins secreted by microorganisms have large molecular weights. We report here an approach to prepare coating by multilayer polymers for antifouling of proteins, especially the proteins with a large molecular weight.Stainless steel was used as the model substrate. The substrate was first coated with a hybrid polymer film, which was formed by simultaneous hydrolytic polycondensation of 3-aminopropyltriethoxysilane and polymerization of dopamine(HPAPD). After grafting the macroinitiator 2-bromoisobutyryl bromide, the block polymer brushes PMMA-b-PHEMA were grafted. Three proteins were used to test protein adsorption and antifouling behavior of the coating, including recombinant green fluorescent(54 k Da), recombinant R-transaminase(2 × 90 k Da), and recombinant catalase(4 × 98 k Da). It is demonstrated that the block polymer brushes not only can prevent the adsorption of small molecular weight proteins, but also can significantly reduce the adsorption of the large molecular weight proteins.展开更多
Ice nucleation and accretion on structural surfaces are sources of major safety and operational concerns in many industries including aviation and renewable energy.Common methods for tackling these are active ones suc...Ice nucleation and accretion on structural surfaces are sources of major safety and operational concerns in many industries including aviation and renewable energy.Common methods for tackling these are active ones such as heating,ultrasound,and chemicals or passive ones such as surface coatings.In this study,we explored the ice adhesion properties of slippery coated substrates by measuring the shear forces required to remove a glaze ice block on the coated substrates.Among the studied nanostructured and nanoscale surfaces[i.e.,a superhydrophobic coating,a fluoropolymer coating,and a polydimethylsiloxane(PDMS)chain coating],the slippery omniphobic covalently attached liquid(SOCAL)surface with its flexible polymer brushes and liquid-like structure significantly reduced the ice adhesion on both glass and silicon surfaces.Further studies of the SOCAL coating on roughened substrates also demonstrated its low ice adhesion.The reduction in ice adhesion is attributed to the flexible nature of the brush-like structures of PDMS chains,allowing ice to detach easily.展开更多
A weighted density functional theory is proposed to predict the surface tension and thin-thick film transition of a Lennard-Jones fluid on a planar solid surface. The underlying density functional theory for the Lenna...A weighted density functional theory is proposed to predict the surface tension and thin-thick film transition of a Lennard-Jones fluid on a planar solid surface. The underlying density functional theory for the Lennard-Jones fluid at low temperature is based on a modified fundamental measure theory for the hard-core repulsion, a Taylor expansion around zero-bulk-density for attraction, and a correlation term evaluated by the weighted density approximation with a weight function of the Heaviside step function. The predicted surface tension and thin-thick film transition agree well with the results from the Monte Carlo simulations, better than those from alternative approaches. For the Ar/CO2 system, the prewetting line has been calculated. The predicted reduced surface critical temperature is about 0.97, and the calculated wetting temperature is below the triple-point temperature. This is in agreement with the experimental observation.展开更多
We study the effects of viscous dissipation on flow and heat transfer in a thin liquid film on an unsteady stretching sheet. A general surface temperature is taken into consideration. The velocity and temperature fiel...We study the effects of viscous dissipation on flow and heat transfer in a thin liquid film on an unsteady stretching sheet. A general surface temperature is taken into consideration. The velocity and temperature fields are solved using the homotopy analysis method. The results show that the increasing values of the Eckert number can increase temperature distribution and the heat transfer rate.展开更多
We investigate the capillary forces between submillimeter spheres and flat surfaces at constant liquid volumes theoretically and experimentally. An iterative method is used to estimate the capillary force with contact...We investigate the capillary forces between submillimeter spheres and flat surfaces at constant liquid volumes theoretically and experimentally. An iterative method is used to estimate the capillary force with contact angles as the boundary conditions and the constant volume as a constraint. The theoretical analysis shows that the maximum capillary force between them decreases with the increase of the liquid bridge volume at small contact angles. The experimental results show that the force is smaller than the theoretical values at the initial separation distances. It is also observed that the force first increases and then decreases with an increasing separation distance in some cases. These phenomena of capillary forces hysteresis are explained according to the wetting hysteresis.展开更多
Surface molecularly imprinted polymers (SMIP) was prepared via the reversible addition-fragmentation chain transfer (RAFT) polymerization on the chloromethyl polystyrene resin (CPR) in the presence of the templa...Surface molecularly imprinted polymers (SMIP) was prepared via the reversible addition-fragmentation chain transfer (RAFT) polymerization on the chloromethyl polystyrene resin (CPR) in the presence of the template D-phenylalanine. The structure of SMIP was characterized by FTIR and SEM. The adsorption behavior of D-phenylalanine of SMIP was preliminarily investigated.展开更多
Azobenzene polymer films doped with and without Ag nanoparticles are prepared. The photoinduced reorientation process is investigated by using an Nd:YVO4 pump beam at 532 nm and a low semiconductor laser beam at 650 ...Azobenzene polymer films doped with and without Ag nanoparticles are prepared. The photoinduced reorientation process is investigated by using an Nd:YVO4 pump beam at 532 nm and a low semiconductor laser beam at 650 nm. The reorientation rate of azo polymer films is enhanced in the presence of Ag nanoparticles, and the rate of the azo polymer film with Ag concentration of 2.2 μg/ml is larger than that of the azo polymer films with Ag concentrations of 1.1 μg/ml and 4.4 μg/ml. The third-order nonlinear optical properties of the Ag/azo composite film are obtained by the Z-scan technique at a wavelength of 532 nm, and the measured nonlinear refractive index is 9.258×10-9 esu. It is shown that the main mechanisms involved in the large nonlinear optical responses come from the local field enhancement of Ag nanoparticles and the nonlinear effect of the azo polymer matrix.展开更多
Liquid-like polymer lubricating surfaces(LPLSs)are solid substrates with highly flexible polymer chains grafted via covalent bonds.This unique modification enables ultralow contact-angle hysteresis,repellency of vario...Liquid-like polymer lubricating surfaces(LPLSs)are solid substrates with highly flexible polymer chains grafted via covalent bonds.This unique modification enables ultralow contact-angle hysteresis,repellency of various liquids and bulk ice,and stability.The distinctive wettability and universality of LPLSs have potential applications in liquid motion,biological detection,and environmental protection.In this review,we summarize the mechanisms,preparation,and applications of LPLSs.We discuss the wettability and lubrication mechanisms of liquid droplets on LPLSs.We then categorize LPLS fabrication into“grafted onto”and“grafted from”groups,depending on the type of polymer.We highlight representative applications with recent developments in anti-complex liquid,anti-icing,anti-biological adhesions,biosensing,and photocatalytic activity.Finally,we discuss future challenges and outlooks for LPLSs.展开更多
A novel surface active monomer (surfmer) containing poly(ethylene glycol) chain and terminated phosphate group was synthesized. The copolymerization of synthesized surfmer with NVP (N-vinylpyrrolidone) and with ...A novel surface active monomer (surfmer) containing poly(ethylene glycol) chain and terminated phosphate group was synthesized. The copolymerization of synthesized surfmer with NVP (N-vinylpyrrolidone) and with NVP and VEP (5-tert-butylperoxy-5-methyl-2-hexene-3-yne monomer) led to formation of corresponding surface-active copolymers. The capability of application of resulted copolymers as surface active macroinitiators of emulsion polymerization of styrene and as components of polymeric scaffolds was investigated.展开更多
文摘The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed. The change of the surface property over time, in comparison with low pressure oxygen (O2) plasma treatment, is examined. As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement. However, when the atmospheric pressure plasma was used for PP(polypropylene), it produced remarkable hydrophilic effects.
文摘This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.
基金supported by the National Natural Science Foundation of China(Grant No.21374088)the grant from the Program for New Century Excellent Talents of Ministry of Education(Grant No.NCET-13-0476)+1 种基金the Program of Youth Science and Technology Nova of Shaanxi Province of China(Grant No.2013KJXX-21)the Program of New Staff and Research Area Project of NPU(Grant No.13GH014602)
文摘A general, rapid and solvent-free approach is proposed to fabricate nanostructured polymer surfaces by coupling ultrasonic vi- bration and anodized aluminum oxide templating. With our approach, hollow nanorods or nanofibers with controlled diameter and length are prepared on polymer surfaces. The whole fabrication process is completed in ~30 s and equally applicable to polymers of different crystalline structures. The wettability of the as-fabricated polymer surfaces (being hydrophilic, hydro- phobic, highly hydrophobic or even superhydrophobic) is readily regulated by adjusting the welding time from 0 s to a maxi- mum of 10 s. Our approach can be a promising industrial basis for manufacturing functional nanomaterials in the fields of electronics, optics, sensors, biology, medicine, coating, or fluidic technologies.
基金financially supported by the National Natural Science Foundation of China (Nos. 81573391 and 81173024)the National Key Projects of China (No. 812277802)
文摘Surface molecularly imprinted polymers (SMIPs) for selective adsorption of ampicillin sodium were synthesized using surface molecular imprinting technique with silica gel as a support. The physical and morphological characteristics of the polymers were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), elemental analysis and nitrogen adsorption-desorption test. The obtained results showed that the SMIPs displayed great adsorption capacity (13.5 lag/mg), high recognition ability (the imprinted factor is 3.2) and good binding kinetics for ampicillin sodium. Finally, as solid phase extraction adsorbents, the SMIPs coupled with HPLC method were validated and applied for the enrichment, purification and determination of anapicillin sodium in real milk and blood samples. The averages of spiked accuracy ranged from 92.1% to 107.6%. The relative standard deviations of intra- and inter-day precisions were less than 4.6%. This study provides a new and promising method for enriching, extracting and determining ampicillin sodium in complex biological samples.
基金was supported by the National Natural Science Foundation of China(91545113,21703050)the China Postdoctoral Science Foundation(2017M610363,2018T110584)+2 种基金Shell Global Solutions International B.V.(PT71423,PT74557)the Fok Ying Tong Education Foundation(131015)the Science&Technology Program of Ningbo(2017C50014)~~
文摘Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand to tune the selectivity of propane oxidative dehydrogenation. Beneficial from the weakened affinity of propene, NiO modified with polymeric phosphate shows a selectivity 2–3 times higher than NiO towards the production of propene. The success of this regulation verifies the feasibility of ligand modification in high-temperature gas-phase reactions and shines a light on its applications in other important industrial reactions.
文摘A new process for lamination of polymer films by 'bulk surface photografting' has been developed. The chemical component of the invention is that the curing of reactive solution between two substrates is initiated by the surface free radicals produced by aromatic ketones and surface-hydrogen of substrates. Using the new approach, two or more polymer films are bonded together by a grafted polymer network which is grafted to adjacent substrate surfaces. The technique has been applied to film substrates of different polymers such as polyolefins, polyesters, and polyamides which have abstractable hydrogens at the surface. The photolaminated film composites containing carrier films and an intermediate functional film of low permeability give strong laminates with high barrier properties, e.g, for oxygen and air.
基金Financial supported by the Natural Science Foundation of China (No: 50003006)
文摘The uniform surface ion-imprinted resins for Zn2+ as the imprinting guest were prepared by emulsifier-free emulsion polymerization utilizing ally phenyl hydrogenphosphate as a functional comonomer. The Zn2+-imprinted resin adsorbed Zn2+ much more effectively than did the unimprinted one. The selective feature of the surface imprinted resins to the template ions was demonstrated.
文摘The coordination polymerization of benzotriazole with metallic copper has been investigated by infrared and X-ray photoelectron spectroscopies. We found that benzotriazole could react with copper (0) under mild conditions to form bis (benzotriazolato) copper (Ⅱ) and benzotriazolato copper (Ⅰ)which covered the surface of copper metal in the shape of polymeric materials. Since benzotriazole is of great interest as a ligand in that its presence in many biological system with metal ions, and is considered as a corrosion inhibitor, this work will be in favour of the study of protective corrosion.
文摘This paper reports the phase separation behavior of ABS films cast on the surfaces of homopelymers or random copolymers.It is found that phase separation of ABS films was induced by the surfaces of the substrate polymers.The relationship between the miscibility of the sub- strate polymers and the phase separation behavior of ABS films was also examined.
文摘This work aimed at investigating the feasibility of surface modification of cellulose nanocrystals (CNCs) using <em>in situ</em> ring opening polymerization of <em>ε</em>-caprolactone (<em>ε</em>-CL) at room temperature. Residues of flax and milkweed (<em>Asclepias syriaca</em>) stem fibers were used as a source of cellulose to obtain and isolate CNCs. The cationic ring opening polymerization (CROP) of the monomer <em>ε</em>-CL was used to covalently graft polycaprolactone (PCL) chains at the CNCs surface. Silver hexafluoroantimonate (AgSbF<sub>6</sub>) was used in combination with the extracted CNCs to initiate, at room temperature, the polymerization and the grafting reactions with no other stimulus. Fourier-Transform InfraRed (FTIR), X-ray Photoelectron Spectrometry (XPS), UV/visible absorption and Gel Permeation Chromatography (GPC) analyses evidenced the presence of PCL chains covalently grafted at CNCs surface, the formation of Ag(0) particles as well as low or moderate molecular weight free PCL chains.
基金supported by NSFC (29774036200174048) and National 863 Project (NO. 2001AA334060) aswell as SKLPPC Foundation Joint Laboratory of Polymer Sciences & Materials
基金Supported by the National Natural Science Foundation of China(21476023)
文摘Some proteins secreted by microorganisms have large molecular weights. We report here an approach to prepare coating by multilayer polymers for antifouling of proteins, especially the proteins with a large molecular weight.Stainless steel was used as the model substrate. The substrate was first coated with a hybrid polymer film, which was formed by simultaneous hydrolytic polycondensation of 3-aminopropyltriethoxysilane and polymerization of dopamine(HPAPD). After grafting the macroinitiator 2-bromoisobutyryl bromide, the block polymer brushes PMMA-b-PHEMA were grafted. Three proteins were used to test protein adsorption and antifouling behavior of the coating, including recombinant green fluorescent(54 k Da), recombinant R-transaminase(2 × 90 k Da), and recombinant catalase(4 × 98 k Da). It is demonstrated that the block polymer brushes not only can prevent the adsorption of small molecular weight proteins, but also can significantly reduce the adsorption of the large molecular weight proteins.
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)of the U.K.(Grant No.EP/P018998/1)the Acoustofluidics Special Interest Group of the UK Fluids Network(Grant No.EP/N032861/1)the EPSRC Centre for Doctoral Training in Renewable Energy Northeast Universities(ReNU)(Grant No.EP/S023836/1).
文摘Ice nucleation and accretion on structural surfaces are sources of major safety and operational concerns in many industries including aviation and renewable energy.Common methods for tackling these are active ones such as heating,ultrasound,and chemicals or passive ones such as surface coatings.In this study,we explored the ice adhesion properties of slippery coated substrates by measuring the shear forces required to remove a glaze ice block on the coated substrates.Among the studied nanostructured and nanoscale surfaces[i.e.,a superhydrophobic coating,a fluoropolymer coating,and a polydimethylsiloxane(PDMS)chain coating],the slippery omniphobic covalently attached liquid(SOCAL)surface with its flexible polymer brushes and liquid-like structure significantly reduced the ice adhesion on both glass and silicon surfaces.Further studies of the SOCAL coating on roughened substrates also demonstrated its low ice adhesion.The reduction in ice adhesion is attributed to the flexible nature of the brush-like structures of PDMS chains,allowing ice to detach easily.
基金Supported by the National Natural Science Foundation of China under Grant Nos 20876083 and 20736003.
文摘A weighted density functional theory is proposed to predict the surface tension and thin-thick film transition of a Lennard-Jones fluid on a planar solid surface. The underlying density functional theory for the Lennard-Jones fluid at low temperature is based on a modified fundamental measure theory for the hard-core repulsion, a Taylor expansion around zero-bulk-density for attraction, and a correlation term evaluated by the weighted density approximation with a weight function of the Heaviside step function. The predicted surface tension and thin-thick film transition agree well with the results from the Monte Carlo simulations, better than those from alternative approaches. For the Ar/CO2 system, the prewetting line has been calculated. The predicted reduced surface critical temperature is about 0.97, and the calculated wetting temperature is below the triple-point temperature. This is in agreement with the experimental observation.
文摘We study the effects of viscous dissipation on flow and heat transfer in a thin liquid film on an unsteady stretching sheet. A general surface temperature is taken into consideration. The velocity and temperature fields are solved using the homotopy analysis method. The results show that the increasing values of the Eckert number can increase temperature distribution and the heat transfer rate.
基金Supported by the National Natural Science Funds for Distinguished Young Scholar under Grant No 50725518, the National Natural Science Foundation of China under Grant Nos 50805040 and 50605013, Self-Planned Task of State Key Laboratory of Robotics and System (HIT) under Grant No SKLRS200804B.
文摘We investigate the capillary forces between submillimeter spheres and flat surfaces at constant liquid volumes theoretically and experimentally. An iterative method is used to estimate the capillary force with contact angles as the boundary conditions and the constant volume as a constraint. The theoretical analysis shows that the maximum capillary force between them decreases with the increase of the liquid bridge volume at small contact angles. The experimental results show that the force is smaller than the theoretical values at the initial separation distances. It is also observed that the force first increases and then decreases with an increasing separation distance in some cases. These phenomena of capillary forces hysteresis are explained according to the wetting hysteresis.
文摘Surface molecularly imprinted polymers (SMIP) was prepared via the reversible addition-fragmentation chain transfer (RAFT) polymerization on the chloromethyl polystyrene resin (CPR) in the presence of the template D-phenylalanine. The structure of SMIP was characterized by FTIR and SEM. The adsorption behavior of D-phenylalanine of SMIP was preliminarily investigated.
文摘Azobenzene polymer films doped with and without Ag nanoparticles are prepared. The photoinduced reorientation process is investigated by using an Nd:YVO4 pump beam at 532 nm and a low semiconductor laser beam at 650 nm. The reorientation rate of azo polymer films is enhanced in the presence of Ag nanoparticles, and the rate of the azo polymer film with Ag concentration of 2.2 μg/ml is larger than that of the azo polymer films with Ag concentrations of 1.1 μg/ml and 4.4 μg/ml. The third-order nonlinear optical properties of the Ag/azo composite film are obtained by the Z-scan technique at a wavelength of 532 nm, and the measured nonlinear refractive index is 9.258×10-9 esu. It is shown that the main mechanisms involved in the large nonlinear optical responses come from the local field enhancement of Ag nanoparticles and the nonlinear effect of the azo polymer matrix.
基金supported by the Fundamental Research Funds for the China Postdoctoral Science Foundation(No.2022M710611)the S&T Special Program of Huzhou(Nos.2021GZ10 and 2021GZ51)+5 种基金the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(No.2021ZYD0046)the Chengdu Science and Technology Bureau(No.2021-GH02-00105-HZ)the Sichuan Outstanding Young Scholars Foundation(No.2021JDJQ0013)the Sichuan Science and Technology Program Foundation(Nos.2021JDRC0016 and 2023JDRC0082)the“Medical and Industrial Cross Foundation”of University of Electronic Science and Technology of China and Sichuan Provincial People’s Hospital(No.ZYGX2021YGLH207)the“Oncology Medical Engineering Innovation Foundation”project of University of Electronic Science and Technology of China and Sichuan Cancer Hospital(No.ZYGX2021YGCX009).
文摘Liquid-like polymer lubricating surfaces(LPLSs)are solid substrates with highly flexible polymer chains grafted via covalent bonds.This unique modification enables ultralow contact-angle hysteresis,repellency of various liquids and bulk ice,and stability.The distinctive wettability and universality of LPLSs have potential applications in liquid motion,biological detection,and environmental protection.In this review,we summarize the mechanisms,preparation,and applications of LPLSs.We discuss the wettability and lubrication mechanisms of liquid droplets on LPLSs.We then categorize LPLS fabrication into“grafted onto”and“grafted from”groups,depending on the type of polymer.We highlight representative applications with recent developments in anti-complex liquid,anti-icing,anti-biological adhesions,biosensing,and photocatalytic activity.Finally,we discuss future challenges and outlooks for LPLSs.
文摘A novel surface active monomer (surfmer) containing poly(ethylene glycol) chain and terminated phosphate group was synthesized. The copolymerization of synthesized surfmer with NVP (N-vinylpyrrolidone) and with NVP and VEP (5-tert-butylperoxy-5-methyl-2-hexene-3-yne monomer) led to formation of corresponding surface-active copolymers. The capability of application of resulted copolymers as surface active macroinitiators of emulsion polymerization of styrene and as components of polymeric scaffolds was investigated.