期刊文献+
共找到51,442篇文章
< 1 2 250 >
每页显示 20 50 100
Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil-water two-phase flow
1
作者 Yang Wang Jia Zhang +2 位作者 Shi-Long Yang Ze-Xuan Xu Shi-Qing Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期343-351,共9页
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni... Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves. 展开更多
关键词 polymer flooding Non-Newtonian fluid Non-uniform fracture conductivity Two-phase flow Pressure transient analysis
下载PDF
Polymer flooding: Current status and future directions 被引量:3
2
作者 R.S.Seright Dongmei Wang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期910-921,共12页
This review presents our perspective on the factors that have brought polymer flooding to its current state. Insights are provided on why HPAM is the dominant polymer used as well as what is needed to make alternative... This review presents our perspective on the factors that have brought polymer flooding to its current state. Insights are provided on why HPAM is the dominant polymer used as well as what is needed to make alternative polymers and mobility-control methods viable. Explanation is given for why large polymer banks are needed for polymer flooding, and design of the injected polymer viscosity is detailed for cases with/without crossflow. The role of fractures and horizontal wells are discussed for improving injectivity and extending polymer flooding to recover oils with viscosities as high as 10,000 cP. Operational improvements are described to minimize mechanical and oxidative stability to allow HPAM polymers to be viable to 70 °C and ATBS polymers to 120 °C. Key factors affecting polymer retention are summarized. The paper points out unresolved issues and future directions for polymer flooding. 展开更多
关键词 polymer flooding Reservoir sweep improvement
下载PDF
Transient pressure analysis of polymer flooding fractured wells with oil-water two-phase flow
3
作者 WANG Yang YU Haiyang +2 位作者 ZHANG Jia FENG Naichao CHENG Shiqing 《Petroleum Exploration and Development》 2023年第1期175-182,共8页
The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusio... The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusion,adsorption retention,inaccessible pore volume and effective permeability reduction.The finite volume difference and Newton iteration methods are applied to solve the model,and the effects of fracture conductivity coefficient,injected polymer mass concentration,initial polymer mass concentration and water saturation on the well-test type curves of polymer flooding fractured wells are discussed.The results show that with the increase of fracture conductivity coefficient,the pressure conduction becomes faster and the pressure drop becomes smaller,so the pressure curve of transitional flow goes downward,the duration of bilinear flow becomes shorter,and the linear flow appears earlier and lasts longer.As the injected polymer mass concentration increases,the effective water phase viscosity increases,and the pressure loss increases,so the pressure and pressure derivative curves go upward,and the bilinear flow segment becomes shorter.As the initial polymer mass concentration increases,the effective water phase viscosity increases,so the pressure curve after the wellbore storage segment moves upward as a whole.As the water saturation increases,the relative permeability of water increases,the relative permeability of oil decreases,the total oil-water two-phase mobility becomes larger,and the pressure loss is reduced,so the pressure curve after the wellbore storage segment moves downward as a whole.The reliability and practicability of this new model are verified by the comparison of the results from simplified model and commercial well test software,and the actual well test data. 展开更多
关键词 fractured vertical well polymer flooding two-phase flow well test analysis model type curve influence factor
下载PDF
Establishment of Unstable Flow Model and Well Testing Analysis for Viscoelastic Polymer Flooding
4
作者 Zheng Lv Meinan Wang 《World Journal of Engineering and Technology》 2023年第2期273-280,共8页
At present, the polymer solution is usually assumed to be Newtonian fluid or pseudoplastic fluid, and its elasticity is not considered on the study of polymer flooding well testing model. A large number of experiments... At present, the polymer solution is usually assumed to be Newtonian fluid or pseudoplastic fluid, and its elasticity is not considered on the study of polymer flooding well testing model. A large number of experiments have shown that polymer solutions have viscoelasticity, and disregarding the elasticity will cause certain errors in the analysis of polymer solution seepage law. Based on the percolation theory, this paper describes the polymer flooding mechanism from the two aspects of viscous effect and elastic effect, the mathematical model of oil water two-phase three components unsteady flow in viscoelastic polymer flooding was established, and solved by finite difference method, and the well-test curve was drawn to analyze the rule of well test curve in polymer flooding. The results show that, the degree of upward warping in the radial flow section of the pressure recovery curve when considering polymer elasticity is greater than the curve which not considering polymer elasticity. The relaxation time, power-law index, polymer injection concentration mainly affect the radial flow stage of the well testing curve. The relaxation time, power-law index, polymer injection concentration and other polymer flooding parameters mainly affect the radial flow stage of the well testing curve. The larger the polymer flooding parameters, the greater the degree of upwarping of the radial flow derivative curve. This model has important reference significance for well-testing research in polymer flooding oilfields. 展开更多
关键词 polymer flooding VISCOELASTICITY Well Testing Mathematical Model Seepage Law
下载PDF
Numerical Simulation of High Concentration Polymer Flooding in Oilfield Development
5
作者 Huan Wang 《International Journal of Geosciences》 CAS 2023年第4期329-336,共8页
The field test of high concentration polymer flooding has the characteristics of high cost, long cycle and irreversibility of the reservoir development process. In order to ensure the best development effect of the de... The field test of high concentration polymer flooding has the characteristics of high cost, long cycle and irreversibility of the reservoir development process. In order to ensure the best development effect of the development block, this paper simulated and calculated the high concentration polymer flooding development case of the polymer flooding pilot test area through numerical simulation research, and selected the best case through the comparison of various development indicators. The simulation results showed that the larger the polymer dosage and the higher the concentration, the better the oil displacement effect. The best injection method in the construction process was the overall injection of high concentration polymer. The test area should implement high concentration polymer oil displacement as soon as possible. The research results provided theoretical guidance for the future development and management of the pilot area. 展开更多
关键词 polymer flooding Numerical Simulation Reservoir Development Recovery Ratio
下载PDF
Necessity and feasibility of improving the residual resistance factor of polymer flooding in heavy oil reservoirs 被引量:16
6
作者 Shi Leiting Ye Zhongbin Zhang Zhuo Zhou Changjiang Zhu Shanshan Guo Zhidong 《Petroleum Science》 SCIE CAS CSCD 2010年第2期251-256,共6页
The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oi... The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oil. On the basis of mobility control theory, increasing the residual resistance factor not only reduces the water-oil mobility ratio but also decreases the requirement for viscosity enhancement of the polymer solution. The residual resistance factor caused by hydrophobic associating polymer solution is higher than that caused by polyacrylamide solution in brine containing high concentrations of calcium and magnesium ions. The results of numerical simulations show that the polymer flooding efficiency improved by increasing the residual resistance factor is far better than that by only increasing solution viscosity. The recovery factor of heavy oil reservoirs (70 mPa·s) can be enhanced by hydrophobic associating polymer solution of high residual resistance factor (more than 3) and high effective viscosity (24 mPa·s). Therefore, increasing the residual resistance factor of the polymer solution not only decreases the requirement for the viscosity of polymer solution injected into heavy oil reservoirs but also is favorable to enhanced oil recovery during polymer flooding. 展开更多
关键词 Heavy oil reservoir polymer flooding mobility control residual resistance factor VISCOSITY
下载PDF
Advanced treatment of oil recovery wastewater from polymer flooding by UV/H_2O_2/O_3 and fine filtration 被引量:10
7
作者 REN Guang-meng SUN De-zhi Jong Shik CHUNK 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第1期29-32,共4页
In order to purify oil recovery wastewater from polymer flooding (ORWPF) in tertiary oil recovery in oil fields, advanced treatment of UV/H2O2/O3 and fine filtration were investigated. The experimental results showe... In order to purify oil recovery wastewater from polymer flooding (ORWPF) in tertiary oil recovery in oil fields, advanced treatment of UV/H2O2/O3 and fine filtration were investigated. The experimental results showed that polyacrylamide and oil remaining in ORWPF after the conventional treatment process could be effectively removed by UV/H2O2/O3 process. Fine filtration gave a high performance in eliminating suspended solids. The treated ORWPF can meet the quality requirement of the wastewater-bearing polymer injection in oilfield and be safely re-injected into oil reservoirs for oil recovery. 展开更多
关键词 oil recovery wastewater from polymer flooding UV/H2O2/O3 process POLYACRYLAMIDE
下载PDF
Enhanced oil recovery mechanisms of polymer flooding in a heterogeneous oil reservoir 被引量:5
8
作者 LU Xiangguo CAO Bao +5 位作者 XIE Kun CAO Weijia LIU Yigang ZHANG Yunbao WANG Xiaoyan ZHANG Jie 《Petroleum Exploration and Development》 CSCD 2021年第1期169-178,共10页
Taking reservoir rocks and fluids of the Daqing,Dagang and Changqing oilfields as research objects,the EOR mechanisms and technical approach of polymer flooding were discussed.By comparing the displacement performance... Taking reservoir rocks and fluids of the Daqing,Dagang and Changqing oilfields as research objects,the EOR mechanisms and technical approach of polymer flooding were discussed.By comparing the displacement performances of ordinary polymer,glycerol,polymer in"sheet-net"structure and heterogeneous weak gel at the same viscosity and concentration,the relationship between the viscosity of polymer displacement agents and displacement performance was demonstrated,and the method of improving polymer flooding effect was worked out.The main mechanism of polymer flooding to increase oil recovery is the swept volume expansion of water injection due to polymer retention in porous media.The viscosity of polymer agents has no positive correlation with polymer flooding effect.Although polymer of"sheet-net"structure has strong capacity in increasing viscosity,it has poor compatibility with pore throat structure of reservoir rock,low injectivity and low shear resistance.Heterogeneous weak gel system has higher adsorption and capture capacity in porous media,which is easy to retain in porous media,and can effectively establish seepage resistance in high permeability layers(zones).Compared with polymer solutions with the same viscosity or concentration,it has stronger ability to expand swept volume.Long term injection of polymer flooding agents will inevitably lead to fluid entry profile reversal,and thus worsening of polymer flooding effect.Alternate injection of high retention and low or non-retention displacement agents can further improve the displacement effect of polymer flooding agents. 展开更多
关键词 heterogeneous reservoir polymer flooding displacement performances enhancement of oil recovery swept volume improvement method
下载PDF
CURRENT COLLOIDAL DISPERSION GELS ARE NOT SUPERIOR TO POLYMER FLOODING 被引量:1
9
作者 Seright Randy Han Peihui Wang Dongmei 《大庆石油地质与开发》 CAS CSCD 北大核心 2006年第5期71-80,共10页
The suggestion that the colloidal-dispersion-gel (CDG) process is superior to normal polymer flooding is misleading and generally incorrect. Colloidal dispersion gels, in their present state of technological developme... The suggestion that the colloidal-dispersion-gel (CDG) process is superior to normal polymer flooding is misleading and generally incorrect. Colloidal dispersion gels, in their present state of technological development, should not be advocated as an improvement to, or substitute for, polymer flooding. Gels made from aluminum-citrate crosslinked polyacrylamides can act as conventional gels and provide effective conformance improvement in treating some types of excess water production problems if sound scientific and engineering principles are respected. 展开更多
关键词 Colloidal-dispersion-gel(CDG) polymer flooding Controversy
下载PDF
Qualitative and Quantitative Evaluation of Permeability Changes during EOR Polymer Flooding Using Micromodels 被引量:1
10
作者 Lucas Oliver Knobloch Rafael E. Hincapie +2 位作者 Hendrik Fö disch Leonhard Ganzer 《World Journal of Engineering and Technology》 2018年第2期332-349,共18页
Polymer solutions are used in chemical EOR processes to achieve incremental oil recoveries through obtaining favorable mobility ratios. In the process, the?in-situ?viscosity is a key parameter for the polymer flood de... Polymer solutions are used in chemical EOR processes to achieve incremental oil recoveries through obtaining favorable mobility ratios. In the process, the?in-situ?viscosity is a key parameter for the polymer flood design, as well as the changes in permeability due to the retention or adsorption (e.g.: plugging). Understanding the major causes of the plugging effects allows?predicting injectivity problems as well as optimizing project design. The objective of this work is to use glass-silicon-glass micromodels in combination with tracer particles—attached to the flooded fluids—to qualitatively and quantitatively describe the extent of permeability changes?after polymer injection. Laboratory work is performed in order to determine the physical properties of the polymer solutions when they flow through porous media, such as the presence of permeability reduction/plugging of the micromodel. A statistical analysis of the distribution and extent of plugged areas?is performed and a study of the pressure response during various injection stages will complement the study. A biopolymer (Scleroglucan) was tested and compared to a commonly used polymer, giving a direct insight into their pros and cons. Five different concentrations of polymers were tested and put into relation with their quantitative and qualitative amount of sort of called retention. The amount of adsorption was determined?experimentally in one case in order to draw the significance. By exploiting the potential of GSG-micromodels in combination with tracer particles, it was possible to visualize the reduction of flow paths and its increase during various injections for the first time. Expanding the working principle proposed in this work could provide further understanding of the behavior of any polymers.?The results obtained and workflow presented in this work allow for additional understanding of polymer solutions behavior in flooding applications. Furthermore, the definition of optimized workflows to?assess any kind of solutions in porous media and permeability changes is?supported. 展开更多
关键词 Enhanced Oil Recovery polymer flooding Micromodels RETENTION Plugging ADSORPTION BIOpolymer
下载PDF
Experimental Study and Numerical Simulation of Polymer Flooding
11
作者 Lei Bai Kai Li +4 位作者 Ke Zhou Qingshan Wan Pengchao Sun Gaoming Yu Xiankang Xin 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1815-1826,共12页
The numerical simulation of polymer flooding is a complex task as this process involves complex physical and chemical reactions,and multiple sets of characteristic parameters are required to properly set the simulatio... The numerical simulation of polymer flooding is a complex task as this process involves complex physical and chemical reactions,and multiple sets of characteristic parameters are required to properly set the simulation.At present,such characteristic parameters are mainly obtained by empirical methods,which typically result in relatively large errors.By analyzing experimentally polymer adsorption,permeability decline,inaccessible pore volume,viscosity-concentration relationship,and rheology,in this study,a conversion equation is provided to convert the experimental data into the parameters needed for the numerical simulation.Some examples are provided to demonstrate the reliability of the proposed approach. 展开更多
关键词 polymer flooding oil displacement mechanism flooding experiment numerical simulation characteristic parameter
下载PDF
Study of Polymer Flooding in Heterogeneous Porous Media by Using Nuclear Magnetic Resonance
12
作者 Xing Zhang 《Energy Engineering》 EI 2021年第5期1453-1467,共15页
Polymer has been successfully used to enhance crude oil recovery at high water cut stage.However,the application of polymer flooding is limited by the heterogeneity of reservoir.In this work,the role of polymer floodi... Polymer has been successfully used to enhance crude oil recovery at high water cut stage.However,the application of polymer flooding is limited by the heterogeneity of reservoir.In this work,the role of polymer flooding in heterogeneous reservoir was explored by nuclear magnetic resonance(NMR)spectroscopy.Parallel core displacement experiments were carried out to study polymer flooding in heterogeneous formation.The results showed that the polymer flooding area was related to permeability and pore connectivity.At the end of the water flooding stage,the residual oil was not evenly distributed in porous media.The percent crude oil recovery increased with the increase of pore diameter.Crude oil recovery from cores with larger pores was higher,and water broke through the highly permeable core first.After 0.3 PV polymer injection,the water mobility of the high permeability core decreased.Polymer injection showed a dual effect,an oil displacement effect and a traction effect.The oil displacement effect was responsible for driving out the crude oil in large pores,whereas the traction effect was responsible for driving out residual oil from small pores.After 1 PV polymer injection,the polymer solution channeled through the highly permeable core rapidly.The crude oil in large pores was washed out completely.The NMR water-phase spectrum line of the highly permeable core was much higher than that of the low permeable core.Under different core permeability and porosity,the NMR peak of the crude oil-phase spectrum line indicated that the polymer flooding is mainly effective on pores>40μm. 展开更多
关键词 Nuclear magnetic resonance relaxation time polymer flooding displacement effect traction effect
下载PDF
Alkaline/Polymer Flooding and Its Application in Liaohe Oilfield
13
《China Oil & Gas》 CAS 1999年第3期174-176,共3页
关键词 OC Alkaline/polymer flooding and Its Application in Liaohe Oilfield KOH
下载PDF
A Polymer Flooding Pilot in Thin Layers of Non-essential Reservorirswith Medium-low Permeability and Heterogeneity in Daqing
14
《China Oil & Gas》 CAS 1999年第4期232-233,共2页
DaqingOilfieldisalargeinlandfluvialdelta-lacustrinesedimentationreservoirwithmulti-layersandhighreservoirheterogeneity.Fromnorthtosouththereare7localstructuresinDaqingOilfield,andverticallythereare3setsofoil-bearingfo... DaqingOilfieldisalargeinlandfluvialdelta-lacustrinesedimentationreservoirwithmulti-layersandhighreservoirheterogeneity.Fromnorthtosouththereare7localstructuresinDaqingOilfield,andverticallythereare3setsofoil-bearingformations-Saertu,PutaohuaandGaotai... 展开更多
关键词 Thin A polymer flooding Pilot in Thin Layers of Non-essential Reservorirswith Medium-low Permeability and Heterogeneity in Daqing
下载PDF
Effects of pore structure on surfactant/polymer floodingbased enhanced oil recovery in conglomerate reservoirs 被引量:2
15
作者 LIU Zheyu LI Yiqiang +3 位作者 LENG Runxi LIU Zhenping CHEN Xin HEJAZI Hossein 《Petroleum Exploration and Development》 2020年第1期134-145,共12页
To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil r... To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil recovery of SP flooding was investigated at the pore, core and field scales through conducting experiments on natural core samples with three typical types of pore structures. First, the in-situ nuclear magnetic resonance core flooding test was carried out to capture the remaining oil variation features in the water flooding and SP flooding through these three types of cores. Subsequently, at the core scale, displacement characteristics and performances of water flooding and SP flooding in these three types of cores were evaluated based on the full-size core flooding tests. Finally, at the field scale, production characteristics of SP flooding in the bimodal sandstone reservoir and multimodal conglomerate reservoir were compared using the actual field production data. The results show: as the pore structure gets more and more complex, the water flooding performance gets poorer, but the incremental recovery factor by SP flooding gets higher;the SP flooding can enhance the producing degree of oil in 1-3 μm pores in the unimodal and bimodal core samples, while it produces largely oil in medium and large pores more than 3 μm in pore radius in the multimodal core sample. The core flooding test using full-size core sample demonstrates that the injection of SP solution can significantly raise up the displacement pressure of the multimodal core sample, and greatly enhance recovery factor by emulsifying the remaining oil and enlarging swept volume. Compared with the sandstone reservoir, the multimodal conglomerate reservoir is more prone to channeling. With proper profile control treatments to efficiently enlarge the microscopic and macroscopic swept volumes, SP flooding in the conglomerate reservoir can contribute to lower water cuts and longer effective durations. 展开更多
关键词 CONGLOMERATE RESERVOIR PORE structure surfactant/polymer flooding DISPLACEMENT effect oil recovery enhancement
下载PDF
Experimental study on surface-active polymer flooding for enhanced oil recovery: A case study of Daqing placanticline oilfield, NE China 被引量:1
16
作者 YU Qiannan LIU Yikun +3 位作者 LIANG Shuang TAN Shuai SUN Zhi YU Yang 《Petroleum Exploration and Development》 2019年第6期1206-1217,共12页
Experiments on surface-active polymer flooding for enhanced oil recovery were carried out by detection analysis and modern physical simulation technique based on reservoirs and fluids in Daqing placanticline oilfield.... Experiments on surface-active polymer flooding for enhanced oil recovery were carried out by detection analysis and modern physical simulation technique based on reservoirs and fluids in Daqing placanticline oilfield.The experimental results show that the surface-active polymer is different from other common polymers and polymer-surfactant systems in molecular aggregation,viscosity and flow capacity,and it has larger molecular coil size,higher viscosity and viscosifying capacity,and poorer mobility.The surface-active polymer solution has good performance of viscosity-increasing and viscosity retention,and has good performance of viscoelasticity and deformability to exert positive effects of viscosifying and viscoelastic properties.Surface-active polymer can change the chemical property of interface and reduce interfacial tension,making the reservoir rock turn water-wet,also it can emulsify the oil into relatively stable oil-in-water emulsion,and emulsification capacity is an important property to enhance oil washing efficiency under non-ultralow interfacial tension.The surface-active polymer flooding enlarges swept volume in two ways:Microscopically,the surface-active polymer has mobility control effect and can enter oil-bearing pores not swept by water to drive residual oil,and its mobility control effect has more contribution than oil washing capacity in enhancing oil recovery.Macroscopically,it has plugging capacity,and can emulsify and plug the dominant channels in layers with high permeability,forcing the injected fluid to enter the layer with medium or low permeability and low flow resistance,and thus enlarging swept volume. 展开更多
关键词 high water-cut OILFIELD reservoir surface-active polymer oil-washing efficiency swept volume plug by EMULSIFICATION enhanced OIL recovery
下载PDF
Test Results for Polymer Flooding in Daqing Oilfield 被引量:1
17
作者 Zhang Jingcun Gao Shutang and Jiang Xiangcheng(Research Institute of Petroleum Esploration andDevelopment, Daqing Petroleum Administration) 《China Oil & Gas》 CAS 1995年第2期25-27,共3页
TestResultsforPolymerFloodinginDaqingOilfield¥ZhangJingcun;GaoShutangandJiangXiangcheng(ResearchInstituteofP... TestResultsforPolymerFloodinginDaqingOilfield¥ZhangJingcun;GaoShutangandJiangXiangcheng(ResearchInstituteofPetroleumEsplorati... 展开更多
关键词 polymer DRIVE PILOT testing TERTIARY OIL RECOVERY
下载PDF
Research on Optimization of Reservoir Perforation Position in Offshore Polymer Flooding Oilfield
18
作者 Lizhen Ge Xinran Wang +2 位作者 Xiaolin Zhu Zhiqiang Zhu Zhiqiang Meng 《Journal of Power and Energy Engineering》 2019年第7期15-28,共14页
In order to enhance the effect of polymer flooding in offshore oilfields, so as to realize the longer stable production period and higher oil recovery, the reservoir perforation positions of production wells and injec... In order to enhance the effect of polymer flooding in offshore oilfields, so as to realize the longer stable production period and higher oil recovery, the reservoir perforation positions of production wells and injection wells are taken as research objects. By analyzing the distribution of remaining oil and production characteristics under different perforation positions, the optimum perforation positions of production wells and injection wells are selected. Bohai oilfield L was taken as target oilfield in this article, according to the actual reservoir characteristic parameters, three-dimensional laboratory physical simulation experiments of water flooding and polymer flooding were carried out, the experiments include different perforation positions of production wells and injection wells. The research result showed that the influence of perforation position on residual oil and development characteristics of the model is obvious. When takes the scheme of injection well upper part perforated and production well all part perforated, the least of the remaining oil distribution, the longest of the production period without water. Contrast with other perforation schemes, its stable production period increase about 1.2 times, the oil recovery of water flooding increase 3.7% - 6.0%, the oil recovery of polymer flooding increase 2.5% - 4.1%. So it is recommended as the best perforation scheme. Preferable effect had been achieved when translating research findings into practice. It can serve as a reference to the similar offshore oilfield. 展开更多
关键词 polymer flooding Laboratory Experiment PERFORATION POSITION REMAINING OIL Distribution Law Enhance OIL Recovery OFFSHORE OILFIELD
下载PDF
Significant Progress in Pilot Test of Polymer Flooding in Daqing Oilfield
19
作者 Liu Heng and Fu Dewu(Daqing Petroleum Administration Bureau) 《China Oil & Gas》 CAS 1994年第3期30-31,共2页
Polymer waterflooding; Well stimulation; Recovery factor; Pilot scale
关键词 polymer WATERflooding WELL STIMULATION Recovery FACTOR PILOT scale
下载PDF
Synthetic polymers:A review of applications in drilling fluids
20
作者 Shadfar Davoodi Mohammed Al-Shargabi +2 位作者 David A.Wood Valeriy S.Rukavishnikov Konstantin M.Minaev 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期475-518,共44页
With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio... With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided. 展开更多
关键词 Synthetic versus natural polymers Nanopolymers Drilling fluid additives LUBRICITY Clay swelling Hole cleaning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部