Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-...Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping.展开更多
The anti-radiation mechanism of polymeric plastic fiber is analyzed. The radiation characteristic of this type fiber is studied. Our experimental results indicate that under the low radiation dosage (below 1 kGy) the ...The anti-radiation mechanism of polymeric plastic fiber is analyzed. The radiation characteristic of this type fiber is studied. Our experimental results indicate that under the low radiation dosage (below 1 kGy) the plastic optical fiber’s transmission rate rises instead of descends while this type of fiber is radiated by γ ray, electron beam and proton beam respectively. After a period of time, it gradually reaches a constant value. But under the high radiation dosage (above 1 kGy) the fiber’s transmission rate descends after radiation. Later, it gradually goes up to a constant value.展开更多
Succinonitrile(SN)-based polymer plastic crystal electrolytes(PPCEs)have attracted considerable attention as solid-state electrolytes owing to their high ionic conductivities similar to those of liquid electrolytes,ex...Succinonitrile(SN)-based polymer plastic crystal electrolytes(PPCEs)have attracted considerable attention as solid-state electrolytes owing to their high ionic conductivities similar to those of liquid electrolytes,excellent contacts with the electrodes,and good mechanic properties.As a crucial property of a solid-state electrolyte,the ionic conductivity of the PPCE directly depends on the interactions between the constituent parts including the polymer,lithium salt,and SN.A few studies have focused on the effects of polymer–lithium–salt and polymer–SN interactions on the PPCE ionic conductivity.Nevertheless,the impact of the lithium–salt–SN combination on the PPCE ionic conductivity has not been analyzed.In particular,tuning of the lithium-salt–SN interaction to fabricate a subzero PPCE with a high low-temperature ionic conductivity has not been reported.In this study,we design and fabricate five PPCE membranes with different weight ratios of Li N(SO2 CF3)2(Li TFSI)and SN to investigate the effect of the Li TFSI–SN interaction on the PPCE ionic conductivity.The ionic conductivities of the five PPCEs are investigated in the temperature range of–20 to 60°C by electro-chemical impedance spectroscopy.The interaction is analyzed by Fourier-transform infrared spectroscopy,Raman spectroscopy,and differential scanning calorimetry.The Li TFSI–SN interaction significantly influences the melting point of the PPCE,dissociation of the Li TFSI salt,and thus the PPCE ionic conductivity.By tuning the Li TFSI–SN interaction,a subzero workable PPCE membrane having an excellent low-temperature ionic conductivity(6×10-4 S cm–1 at 0°C)is obtained.The electro-chemical performance of the optimal PPCE is evaluated by using a Li Co O2/PPCE/Li4 Ti5 O12 cell,which confirms the application feasibility of the proposed quasisolid-state electrolyte in subzero workable lithium-ion batteries.展开更多
The plastic cement belongs to a sort of polymer material, the chemical composition is very complex, and the plastic cement work-piece is generally manufactured by die press forming. Aimed at being difficult to control...The plastic cement belongs to a sort of polymer material, the chemical composition is very complex, and the plastic cement work-piece is generally manufactured by die press forming. Aimed at being difficult to control in parameters of forming process, the paper explored the humanoid based intelligence control strategy. In the paper, it made the anatomy in control puzzle resulted in uncertainty such as chemical component of plastic cement etc., summarized up the characteristic of cybernetics in forming process, researched on the humanoid based intelligence control strategy, and constructed the control algorithm of forming process in plastic cement work-piece. Taking the process experiment of temperature and pressure control as an example, it validated the good dynamic and static control quality through simulation of control algorithm constructed in this paper. The experimental results show that the control algorithm explored in this paper is reasonably available.展开更多
Poly(3-hydroxybutyrate),a crucial member of the large biodegradable polyhydroxyalkanoate family,suffers from its brittleness.To enhance its performance,we employed a straightforward approach involving the ring-opening...Poly(3-hydroxybutyrate),a crucial member of the large biodegradable polyhydroxyalkanoate family,suffers from its brittleness.To enhance its performance,we employed a straightforward approach involving the ring-opening copolymerization of racemic-β-butyrolactone(rac-β-BL)andβ-propiolactone(β-PL)using the syndio-selective amino-alkoxy-bis(phenolate)-yttrium complex as a catalyst,thanks to the excellent ductility of poly(3-hydroxypropionate).Control over the rac-β-BL/β-PL feeding ratios and polymerization time yielded random or block copolymers with tunable thermal and mechanical properties comparable to traditional fossil-based plastics.Furthermore,we achieved one-pot synthesis of hard-soft-hard triblock copolymers by exploiting monomers’different copolymerization rates and a bifunctional initiator,thus transforming polyhydroxyalkanoates from hard and tough plastics to soft and ductile thermoplastic elastomers.展开更多
Plastics are integral to numerous significant social advancements.Nonetheless,their contribution to environmental pollution and climate crises cannot be disregarded,as their negative impact on the environment increase...Plastics are integral to numerous significant social advancements.Nonetheless,their contribution to environmental pollution and climate crises cannot be disregarded,as their negative impact on the environment increases with incremental production capacity and demand.Concerted global action is urgently required to promote the green recycle of plastics to prevent their accumulation in the environment and mitigate carbon emissions.This review aims to reveal the paths of green development for polyester plastics,incorporating the trends of the green revolution in mature commercial polyester plastics,newly emerging biodegradable polyester plastics,and future polyester plastics.A critical discussion was conducted on the current and potential future research areas from multiple perspectives,including raw materials,processes,and recycling,to propel us into a future marked by sustainability.展开更多
Li–O_2 batteries have attracted much attention because of their high specific energy. However, safety problem generated mainly from the flammable organic liquid electrolytes have hindered the commercial use of Li–O_...Li–O_2 batteries have attracted much attention because of their high specific energy. However, safety problem generated mainly from the flammable organic liquid electrolytes have hindered the commercial use of Li–O_2 batteries. One of the competitive alternatives is polymer electrolytes due to their flexibility and non-flammable property. Moreover, the hybrid polymer electrolyte with enhanced electrochemical properties would be achieved by incorporating inorganic filler, liquid plasticizer and redox mediator into the polymer. While most researches of the hybrid polymer electrolyte focused on Li-ion batteries, few of them took account into its application in Li–O_2 batteries. In this review, we mainly discuss hybrid polymer electrolytes for Li–O_2 batteries with different composition. The critical issues including conductivity and stability of electrolytes are also discussed in detail. Our review provides some insights of hybrid polymer electrolytes for Li–O_2 batteries and offers necessary guidelines for designing the suitable hybrid polymer electrolyte for Li–O_2 batteries as well.展开更多
Polymeric materials from renewable resources have attracted a lot of attention in recent years. The development and utilization of vegetable oils for polymeric materials are currently in the spotlight of the polymer a...Polymeric materials from renewable resources have attracted a lot of attention in recent years. The development and utilization of vegetable oils for polymeric materials are currently in the spotlight of the polymer and chemical industry, as they are the largest renewable platform due to their universal wide availability, ingrained biodegradability, low cost, and excellent environmental aspects (i.e., low ecotoxicity and low toxicity toward humans). These excellent natural characteristics are now being taken advantage of in research and development, with vegetable oil derived polymers/polymeric materials/composites being used in numerous applications including paints and coatings, adhesives, and nanocomposites. The aim of this review paper is to give a fundamental description of the various vegetable oil applications in polymer materials and its recent developments. Particular emphasis will be placed on study and main application of triglyceride based additive for polymer and to give the reader an insight into the main developments is discussed.展开更多
Novel conjugated polymers based on squaric acid having 2,5-Bis[(E)-N-alkylpyrrol-2-ylvinyl]-3-alkylthiophene (PVTVP) unit in the main chain were successfully synthesized in good yields through polycondensation rea...Novel conjugated polymers based on squaric acid having 2,5-Bis[(E)-N-alkylpyrrol-2-ylvinyl]-3-alkylthiophene (PVTVP) unit in the main chain were successfully synthesized in good yields through polycondensation reaction. Their molecular structures were characterized by PT-IR and IH NMR. They have good solubility in common organic solvents, good thermal stability by thermal gravimetric analysis and high molecular weights. Their optical properties were investigated by UV-vis absorption spectra in CH2C12 solution, the results indicated all these compounds showed broad and strong spectral responses from 200 nm to 900 nm, suggesting their potential for application as organic plastic solar cells.展开更多
The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to pr...The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to produce high value products that have technical and environmental demand. The two treatment methods used for rice straw are alkali and acidic treatments of rice straw. The removal of impurities and waxy substances from fiber surface avoid creation of rougher topography after treatment and improves the quality of fiber, also content of hemi cellulose and lignin decrease so increase effectiveness of fiber due to dispersing of fiber in matrix. The reinforcing material is embedded in the matrix material to enhance tensile and flexural behaviors of the synthesized composite. The result of investigating these two mechanical properties, using statistical analysis & design of experiments, showed an enhancement in the mechaniccal properties of the virgin polymer composite compared to the virgin polymer. The flexural stress of the composite increased three times the virgin flexural stress, while the tensile stress increased eight times the original tensile stress.展开更多
Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initia...Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initial conditions of strengthened beams. The performances of the BFRP strengthening are compared with those of the carbon fiber reinforced polymer (CFRP) and the glass fiber reinforced polymer (GFRP) under the same experimental condition. Experimental results indicate that the strength and ductility of the strengthened beam with two plies of the BFRP are improved remarkably than those with one ply. The strengthening effects of the BFRP lie between those of the CFRP and the GFRP. The BFRP strengthening is little influenced by pre-cracks of concrete. Most failures are caused by interfaciai debonding induced by flexural cracks in the experiment. Clamping of Uwraps along the whole beam is less efficient than endpoint anchorage for increasing the ultimate load of the strengthened beam. Finally, the models suggested by the five guidelines for predicting the debonding strain of the CFRP are extended to the BFRP and the conservative estimates of the debonding strain of the BFRP are given as well.展开更多
This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to d...This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to different aggressive environments, including tap water, saline solution and ambient temperature environments, to study the effects of the type of solution and relative humidity (RH) on the durability of BFRP. Meanwhile, BFRP bars were directly immersed in an alkaline solution for comparison. The acceleration factor describing the relationship between the alkaline solution immersion and the moisture-saturated concrete was also obtained. Aging was accelerated with a temperature of 60 ℃. The results show that the chloridion in the saline solution does not have any harmful effects on the degradation of the concrete-encased BFRP bars. Contact with an alkaline (high pH) concrete pore-water solution is the primary reason for the degradation of the BFRP bars. The degradation rate of concrete-encased BFRP bars is accelerated when a high temperature and a high humidity are present simultaneously. The degradation rate of the BFRP bars is relatively quick at the initial stage and slows down with exposure time. Results show that the degradation of 2.18 years in moisture-saturated concrete at 60 ℃corresponds to that of one year when directly immersed in an alkaline solution (other conditions remaining the same) for the BFRP bars analyzed.展开更多
文摘Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping.
文摘The anti-radiation mechanism of polymeric plastic fiber is analyzed. The radiation characteristic of this type fiber is studied. Our experimental results indicate that under the low radiation dosage (below 1 kGy) the plastic optical fiber’s transmission rate rises instead of descends while this type of fiber is radiated by γ ray, electron beam and proton beam respectively. After a period of time, it gradually reaches a constant value. But under the high radiation dosage (above 1 kGy) the fiber’s transmission rate descends after radiation. Later, it gradually goes up to a constant value.
基金financially supported by the National Natural Science Foundation of China[grant numbers:21503265,51603135,21473241]Ministry of Science and Technology[grant number:2016YFB0100102]Nantong Science and Technology Bureau[grant number:JC2018038]。
文摘Succinonitrile(SN)-based polymer plastic crystal electrolytes(PPCEs)have attracted considerable attention as solid-state electrolytes owing to their high ionic conductivities similar to those of liquid electrolytes,excellent contacts with the electrodes,and good mechanic properties.As a crucial property of a solid-state electrolyte,the ionic conductivity of the PPCE directly depends on the interactions between the constituent parts including the polymer,lithium salt,and SN.A few studies have focused on the effects of polymer–lithium–salt and polymer–SN interactions on the PPCE ionic conductivity.Nevertheless,the impact of the lithium–salt–SN combination on the PPCE ionic conductivity has not been analyzed.In particular,tuning of the lithium-salt–SN interaction to fabricate a subzero PPCE with a high low-temperature ionic conductivity has not been reported.In this study,we design and fabricate five PPCE membranes with different weight ratios of Li N(SO2 CF3)2(Li TFSI)and SN to investigate the effect of the Li TFSI–SN interaction on the PPCE ionic conductivity.The ionic conductivities of the five PPCEs are investigated in the temperature range of–20 to 60°C by electro-chemical impedance spectroscopy.The interaction is analyzed by Fourier-transform infrared spectroscopy,Raman spectroscopy,and differential scanning calorimetry.The Li TFSI–SN interaction significantly influences the melting point of the PPCE,dissociation of the Li TFSI salt,and thus the PPCE ionic conductivity.By tuning the Li TFSI–SN interaction,a subzero workable PPCE membrane having an excellent low-temperature ionic conductivity(6×10-4 S cm–1 at 0°C)is obtained.The electro-chemical performance of the optimal PPCE is evaluated by using a Li Co O2/PPCE/Li4 Ti5 O12 cell,which confirms the application feasibility of the proposed quasisolid-state electrolyte in subzero workable lithium-ion batteries.
文摘The plastic cement belongs to a sort of polymer material, the chemical composition is very complex, and the plastic cement work-piece is generally manufactured by die press forming. Aimed at being difficult to control in parameters of forming process, the paper explored the humanoid based intelligence control strategy. In the paper, it made the anatomy in control puzzle resulted in uncertainty such as chemical component of plastic cement etc., summarized up the characteristic of cybernetics in forming process, researched on the humanoid based intelligence control strategy, and constructed the control algorithm of forming process in plastic cement work-piece. Taking the process experiment of temperature and pressure control as an example, it validated the good dynamic and static control quality through simulation of control algorithm constructed in this paper. The experimental results show that the control algorithm explored in this paper is reasonably available.
基金supported by the National Natural Science Foundation of China(No.52173093)Peking University Ge Li and Ning Zhao Life Science Research Fund for Young Scientists。
文摘Poly(3-hydroxybutyrate),a crucial member of the large biodegradable polyhydroxyalkanoate family,suffers from its brittleness.To enhance its performance,we employed a straightforward approach involving the ring-opening copolymerization of racemic-β-butyrolactone(rac-β-BL)andβ-propiolactone(β-PL)using the syndio-selective amino-alkoxy-bis(phenolate)-yttrium complex as a catalyst,thanks to the excellent ductility of poly(3-hydroxypropionate).Control over the rac-β-BL/β-PL feeding ratios and polymerization time yielded random or block copolymers with tunable thermal and mechanical properties comparable to traditional fossil-based plastics.Furthermore,we achieved one-pot synthesis of hard-soft-hard triblock copolymers by exploiting monomers’different copolymerization rates and a bifunctional initiator,thus transforming polyhydroxyalkanoates from hard and tough plastics to soft and ductile thermoplastic elastomers.
基金support by the National Natural Science Foundation of China(21901249)the Taishan Scholars Program of Shandong Province(tsqn201812112)the Scientific Research and Innovation Fund Project of the Shandong Energy Research Institute(SEI I202004).
文摘Plastics are integral to numerous significant social advancements.Nonetheless,their contribution to environmental pollution and climate crises cannot be disregarded,as their negative impact on the environment increases with incremental production capacity and demand.Concerted global action is urgently required to promote the green recycle of plastics to prevent their accumulation in the environment and mitigate carbon emissions.This review aims to reveal the paths of green development for polyester plastics,incorporating the trends of the green revolution in mature commercial polyester plastics,newly emerging biodegradable polyester plastics,and future polyester plastics.A critical discussion was conducted on the current and potential future research areas from multiple perspectives,including raw materials,processes,and recycling,to propel us into a future marked by sustainability.
基金partially supported by National Natural Science Foundation of China(21673116,21633003,51602144)National Key Research and Development Program of China(2016YFB0100203)+2 种基金Natural Science Foundation of Jiangsu Province of China(BK20160068)Fundamental Research Funds for the Central Universities(021314380130)PAPD of Jiangsu Higher Education Institutions
文摘Li–O_2 batteries have attracted much attention because of their high specific energy. However, safety problem generated mainly from the flammable organic liquid electrolytes have hindered the commercial use of Li–O_2 batteries. One of the competitive alternatives is polymer electrolytes due to their flexibility and non-flammable property. Moreover, the hybrid polymer electrolyte with enhanced electrochemical properties would be achieved by incorporating inorganic filler, liquid plasticizer and redox mediator into the polymer. While most researches of the hybrid polymer electrolyte focused on Li-ion batteries, few of them took account into its application in Li–O_2 batteries. In this review, we mainly discuss hybrid polymer electrolytes for Li–O_2 batteries with different composition. The critical issues including conductivity and stability of electrolytes are also discussed in detail. Our review provides some insights of hybrid polymer electrolytes for Li–O_2 batteries and offers necessary guidelines for designing the suitable hybrid polymer electrolyte for Li–O_2 batteries as well.
文摘Polymeric materials from renewable resources have attracted a lot of attention in recent years. The development and utilization of vegetable oils for polymeric materials are currently in the spotlight of the polymer and chemical industry, as they are the largest renewable platform due to their universal wide availability, ingrained biodegradability, low cost, and excellent environmental aspects (i.e., low ecotoxicity and low toxicity toward humans). These excellent natural characteristics are now being taken advantage of in research and development, with vegetable oil derived polymers/polymeric materials/composites being used in numerous applications including paints and coatings, adhesives, and nanocomposites. The aim of this review paper is to give a fundamental description of the various vegetable oil applications in polymer materials and its recent developments. Particular emphasis will be placed on study and main application of triglyceride based additive for polymer and to give the reader an insight into the main developments is discussed.
文摘Novel conjugated polymers based on squaric acid having 2,5-Bis[(E)-N-alkylpyrrol-2-ylvinyl]-3-alkylthiophene (PVTVP) unit in the main chain were successfully synthesized in good yields through polycondensation reaction. Their molecular structures were characterized by PT-IR and IH NMR. They have good solubility in common organic solvents, good thermal stability by thermal gravimetric analysis and high molecular weights. Their optical properties were investigated by UV-vis absorption spectra in CH2C12 solution, the results indicated all these compounds showed broad and strong spectral responses from 200 nm to 900 nm, suggesting their potential for application as organic plastic solar cells.
文摘The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to produce high value products that have technical and environmental demand. The two treatment methods used for rice straw are alkali and acidic treatments of rice straw. The removal of impurities and waxy substances from fiber surface avoid creation of rougher topography after treatment and improves the quality of fiber, also content of hemi cellulose and lignin decrease so increase effectiveness of fiber due to dispersing of fiber in matrix. The reinforcing material is embedded in the matrix material to enhance tensile and flexural behaviors of the synthesized composite. The result of investigating these two mechanical properties, using statistical analysis & design of experiments, showed an enhancement in the mechaniccal properties of the virgin polymer composite compared to the virgin polymer. The flexural stress of the composite increased three times the virgin flexural stress, while the tensile stress increased eight times the original tensile stress.
文摘Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initial conditions of strengthened beams. The performances of the BFRP strengthening are compared with those of the carbon fiber reinforced polymer (CFRP) and the glass fiber reinforced polymer (GFRP) under the same experimental condition. Experimental results indicate that the strength and ductility of the strengthened beam with two plies of the BFRP are improved remarkably than those with one ply. The strengthening effects of the BFRP lie between those of the CFRP and the GFRP. The BFRP strengthening is little influenced by pre-cracks of concrete. Most failures are caused by interfaciai debonding induced by flexural cracks in the experiment. Clamping of Uwraps along the whole beam is less efficient than endpoint anchorage for increasing the ultimate load of the strengthened beam. Finally, the models suggested by the five guidelines for predicting the debonding strain of the CFRP are extended to the BFRP and the conservative estimates of the debonding strain of the BFRP are given as well.
基金The National Key Basic Research Program of China(973 Program)(No.2012CB026200)the Key Project of Chinese Ministry of Education(No.113029A)+1 种基金the National Key Technology R&D Program of China during the 12th Five Year Plan Period(No.2011BAB03B09)the Fundamental Research Funds for the Central Universities
文摘This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to different aggressive environments, including tap water, saline solution and ambient temperature environments, to study the effects of the type of solution and relative humidity (RH) on the durability of BFRP. Meanwhile, BFRP bars were directly immersed in an alkaline solution for comparison. The acceleration factor describing the relationship between the alkaline solution immersion and the moisture-saturated concrete was also obtained. Aging was accelerated with a temperature of 60 ℃. The results show that the chloridion in the saline solution does not have any harmful effects on the degradation of the concrete-encased BFRP bars. Contact with an alkaline (high pH) concrete pore-water solution is the primary reason for the degradation of the BFRP bars. The degradation rate of concrete-encased BFRP bars is accelerated when a high temperature and a high humidity are present simultaneously. The degradation rate of the BFRP bars is relatively quick at the initial stage and slows down with exposure time. Results show that the degradation of 2.18 years in moisture-saturated concrete at 60 ℃corresponds to that of one year when directly immersed in an alkaline solution (other conditions remaining the same) for the BFRP bars analyzed.