Several kinds of activated carbon fibers, using sisal fiber as precursors, were prepared with steam activation or with ZnCl2 activation. Zinc or its compounds were dispersed in them. The antibacterial activities of th...Several kinds of activated carbon fibers, using sisal fiber as precursors, were prepared with steam activation or with ZnCl2 activation. Zinc or its compounds were dispersed in them. The antibacterial activities of these activated carbon fibers were determined and compared. The research results showed that these sisal based activated carbon fibers supporting zinc have stronger antibacterial activity against Escherichia coli and S. aureus. The antibacterial activity is related to the precursors, the pyrolysis temperature, and the zinc content. In addition, small quantity of silver supported on zinc-containing ACFs will greatly enhance the antibacterial activity of ACFs.展开更多
Several kinds of activated carbon fiber(ACF), Granule Activated carbon(AC) containing silver ion or fine silver particle(Ag-ACF/AC) have been prepared by soaking ACF or AC in the salt solution of silver. Ag, AgCl ...Several kinds of activated carbon fiber(ACF), Granule Activated carbon(AC) containing silver ion or fine silver particle(Ag-ACF/AC) have been prepared by soaking ACF or AC in the salt solution of silver. Ag, AgCl and AgI compounds have been loaded onto the fibers. The structure of the fibers was measured by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). The Ag content in the fiber was obtained by an Atomic absorption spectroscopy (AAS). The Ag+ content in water after the antibacterial test was measured by an Inductively Coupled Plasma (ICP) emission spectroscopy. Antibacterial test was carried out against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). The results show that Ag-ACF/AC have strong antibacterial activity against E.coli and S.aureus. After dealt with ACF/AC loading Ag, AgCl, AgI, no E.coli and S.aureus alive in solution can be detected. The analysis of Ag content in water after antibacterial test showed that the content of Ag meet the quality requirement of the National Potable Water Standard. It is indicated that ACF/AC-Ag in this experiment would be a safe antibacterial agent .展开更多
Public safety incidents caused by bacterial infections have attracted widespread attention towards antibacterial textiles(fibers,fabrics,etc.).Nevertheless,it is still challenging to efficiently load inorganic nano-an...Public safety incidents caused by bacterial infections have attracted widespread attention towards antibacterial textiles(fibers,fabrics,etc.).Nevertheless,it is still challenging to efficiently load inorganic nano-antibacterial materials in polymer fibers.In this work,zirconium phosphate(ZrP,layered micro-nano materials)was utilized as a micro-nano carrier.The octadecyl triphenyl phosphonium bromide(OTP)was intercalated between the ZrP sheets by the ion exchange method to improve the carrier-polymer compatibility and the antibacterial performance.Through in-situ chemical reduction,the ultra-small nano-sized cuprous oxide(Cu_(2)O<5 nm)was loaded on the outer surface of ZrP to realize the uniform and stable dispersion of the Cu_(2)O on the carrier and improve the antibacterial performance.The ZrP nanosheets loaded with Cu_(2)O and OTP(Cu_(2)O@OZrP)had excellent antibacterial properties,and the antibacterial rate against E.coli,S.aureus and C.albicans was more than 99%.The intercalation amount of OTP in Cu_(2)O@OZrP can reach 16%,and the thermal stability was excellent and a significant increase in the Zeta potential.Indeed,the decomposition temperature was greater than 350℃,which was suitable for high-temperature melt processing of polymers.Consequently,we prepared PET/Cu_(2)O@OZrP fibers using polyethylene glycol terephthalate(PET),which accounts for 70%of the total chemical fibers,as the fiber matrix.PET/Cu_(2)O@OZrP fibers exhibited excellent mechanical property and antibacterial performance when the content of Cu_(2)O@OZrP was only 0.2%.The antibacterial rate against five types of bacteria including super bacteria(MRSA,VRE)was more than 99%.展开更多
Cellulose-based fabrics are ubiquitous in our daily lives.They are the preferred choice for bedding materials,active sportswear,and next-to-skin apparels.However,the hydrophilic and polysaccharide characteristics of c...Cellulose-based fabrics are ubiquitous in our daily lives.They are the preferred choice for bedding materials,active sportswear,and next-to-skin apparels.However,the hydrophilic and polysaccharide characteristics of cellulose materials make them vulnerable to bacterial attack and pathogen infection.The design of antibacterial cellulose fabrics has been a long-term and on-going effort.Fabrication strategies based on the construction of surface micro-/nanostructure,chemical modification,and the application of antibacterial agents have been extensively investigated by many research groups worldwide.This review systematically discusses recent research on super-hydrophobic and antibacterial cellulose fabrics,focusing on morphology construction and surface modification.First,natural surfaces showing liquid-repellent and antibacterial properties are introduced and the mechanisms behind are explained.Then,the strategies for fabricating super-hydrophobic cellulose fabrics are summarized,and the contribution of the liquid-repellent function to reducing the adhesion of live bacteria and removing dead bacteria is elucidated.Representative studies on cellulose fabrics functionalized with super-hydrophobic and antibacterial properties are discussed in detail,and their potential applications are also introduced.Finally,the challenges in achieving super-hydrophobic antibacterial cellulose fabrics are discussed,and the future research direction in this area is proposed.展开更多
Design of artificial ligaments possessing both osteogenic activity and antibacterial effect that promotes ligament-bone healing and prevents bacterial infection in bone tunnels for anterior cruciate ligament(ACL)recon...Design of artificial ligaments possessing both osteogenic activity and antibacterial effect that promotes ligament-bone healing and prevents bacterial infection in bone tunnels for anterior cruciate ligament(ACL)reconstruction remains a significant challenge.In this study,black tantalic oxide(BTO)submicro-particles with oxygen vacancies and structure defects were fabricated by using traditional white tan-talic oxide(WTO)through magnesium thermal reduction(MTR)method,and BTO was coated on polyetheretherketone(PEEK)fibers(PKF),which were woven into fabrics(PBT)as artificial ligaments.PBT with BTO coating exhibited excellent photothermal performance,which possessed not only antibac-terial effects in vitro but also anti-infective ability in vivo.PBT with optimized surface properties(e.g.,submicro-topography and hydrophilicity)not only significantly facilitated rat bone mesenchymal stem cells(BMSC)responses(e.g.,proliferation and osteogenic differentiation)in vitro but also stimulated new bone formation for ligament-bone healing in vivo.The presence of oxygen vacancies and structure de-fects in BTO did not change the surface properties and osteogenic activity of BPT while displaying an outstanding photothermal antibacterial effect.In summary,BPT with osteogenic activity and photother-mal antibacterial effect promoted bone regeneration and prevented bacterial infection,thereby promoting ligament-bone healing.Therefore,PBT would have tremendous potential as a novel artificial ligament for ACL reconstruction.展开更多
This research work has been undertaken to fabricate environmentally friendly biocomposites for biomedical and household applications. Sponge-gourd fibers (SGF) obtained from Luffa cylindrica plant were chemically trea...This research work has been undertaken to fabricate environmentally friendly biocomposites for biomedical and household applications. Sponge-gourd fibers (SGF) obtained from Luffa cylindrica plant were chemically treated separately using 5 and 10 wt% NaOH, acetic anhydride and benzoyl chloride solutions. SGF reinforced polylactic acid (PLA) biocomposites were fabricated using melt compounding technique. Surface morphological, structural, mechanical and thermal properties, as well as antibacterial activities of raw and chemically modified SGF reinforced PLA (SGF-PLA) composites were characterized by field emission scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffractometry, universal testing method, thermogravimetry, and Kirby-Bauer agar diffusion method, respectively. Surface morphology indicates that after treatment of fibers, the interfacial adhesion between PLA and fibers is improved. X-ray diffractometry result shows that chemical treatment of fibers improves the crystallinity and exhibits new chemical bond formation in the composites. After chemical treatment, compressive strength of the composites is found to increase by 10% - 35%. The thermal stability of the treated fiber reinforced composites is also found to increase significantly. The composites have no antibacterial activities and no cytotoxic effect on non-cancer cell line. Soil burial test has confirmed that the composites are biodegradable. Benzoyl chloride treatment of fibers shows superior mechanical properties and enhances thermal stability among the composites.展开更多
The antibacterial polyamide 6(PA6)material has attracted great research interest due to its wide ap-plication in food packaging,biomedical fields,functional textiles,and other fields.However,it is still a challenge to...The antibacterial polyamide 6(PA6)material has attracted great research interest due to its wide ap-plication in food packaging,biomedical fields,functional textiles,and other fields.However,it is still a challenge to prepare intrinsically antibacterial PA6 with highly efficient and durably antibacterial activity via polymerization.Herein,the antibacterial imidazolium ionic liquid of 3-carboxymethyl-1-decyl imida-zole chloride was designed and synthesized for adapting the polymerization and processing temperature of PA6.Then antibacterial PA6(PA6-IL)was synthesized through hydrolyzed ring-opening copolymeriza-tion with imidazolium at the end of the backbones.Compared to physical blending or post-modification methods,antibacterial agents as end-capping reagents of polymer backbones endowed PA6 with intrin-sic antibacterial activity.As expected,the obtained PA6-IL exhibited not just comparable physicochemical and mechanical properties to conventional PA6 but excellent antibacterial activity of low antibacterial time to 60 min and durability for 28 days.Additionally,the corresponding electrospun PA6-IL nanofi-brous membranes showed homogenous morphology and remarkable hydrophilicity of 7.7° as well as the high-efficient antibacterial activity.Melt-spun PA6-IL microfibers revealed a smooth surface as well as enhanced tensile strength and increased breaking elongation compared to those of conventional PA6.The PA6-IL microfibers also behaved with excellent antibacterial efficiency and durability.Accordingly,this work provides a feasible and straightforward strategy to prepare durably and intrinsically antibacterial PA6 materials especially PA6 fibers,which can be widely applied in the textiles field.展开更多
Acinetobacter baumannii(A.baumannii)poses a serious public health challenge due to its notorious antimicrobial resistance,particularly carbapenem-resistant A.baumannii(CRAB).In this study,we isolated a virulent phage,...Acinetobacter baumannii(A.baumannii)poses a serious public health challenge due to its notorious antimicrobial resistance,particularly carbapenem-resistant A.baumannii(CRAB).In this study,we isolated a virulent phage,named P1068,from medical wastewater capable of lysing CRAB,primarily targeting the K3 capsule type.Basic characterization showed that P1068 infected the A.baumannii ZWAb014 with an optimal MOI of 1,experienced a latent period of 10 min and maintained stability over a temperature range of 4–37C and pH range of 3–10.Phylogenetic and average nucleotide identity analyses indicate that P1068 can be classified as a novel species within the genus Obolenskvirus of the Caudoviricetes class as per the most recent virus classification released by the International Committee on Taxonomy of Viruses(ICTV).Additionally,according to classical morphological classification,P1068 is identified as a T4-like phage(Myoviridae).Interestingly,we found that the tail fiber protein(TFP)of P1068 shares 74%coverage and 88.99%identity with the TFP of a T7-like phage(Podoviridae),AbKT21phiIII(NC_048142.1).This finding suggests that the TFP gene of phages may undergo horizontal transfer across different genera and morphologies.In vitro antimicrobial assays showed that P1068 exhibited antimicrobial activity against A.baumannii in both biofilm and planktonic states.In mouse models of intraperitoneal infection,P1068 phage protected mice from A.baumannii infection and significantly reduced bacterial loads in various tissues such as the brain,blood,lung,spleen,and liver compared to controls.In conclusion,this study demonstrates that phage P1068 might be a potential candidate for the treatment of carbapenem-resistant and biofilmforming A.baumannii infections,and expands the understanding of horizontal transfer of phage TFP genes.展开更多
基金Key-program foundation from Guangzhou Science & Technology Committee (1999-J-013-01)
文摘Several kinds of activated carbon fibers, using sisal fiber as precursors, were prepared with steam activation or with ZnCl2 activation. Zinc or its compounds were dispersed in them. The antibacterial activities of these activated carbon fibers were determined and compared. The research results showed that these sisal based activated carbon fibers supporting zinc have stronger antibacterial activity against Escherichia coli and S. aureus. The antibacterial activity is related to the precursors, the pyrolysis temperature, and the zinc content. In addition, small quantity of silver supported on zinc-containing ACFs will greatly enhance the antibacterial activity of ACFs.
基金Foundation of Guangzhou Science and Technology Key Project
文摘Several kinds of activated carbon fiber(ACF), Granule Activated carbon(AC) containing silver ion or fine silver particle(Ag-ACF/AC) have been prepared by soaking ACF or AC in the salt solution of silver. Ag, AgCl and AgI compounds have been loaded onto the fibers. The structure of the fibers was measured by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). The Ag content in the fiber was obtained by an Atomic absorption spectroscopy (AAS). The Ag+ content in water after the antibacterial test was measured by an Inductively Coupled Plasma (ICP) emission spectroscopy. Antibacterial test was carried out against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). The results show that Ag-ACF/AC have strong antibacterial activity against E.coli and S.aureus. After dealt with ACF/AC loading Ag, AgCl, AgI, no E.coli and S.aureus alive in solution can be detected. The analysis of Ag content in water after antibacterial test showed that the content of Ag meet the quality requirement of the National Potable Water Standard. It is indicated that ACF/AC-Ag in this experiment would be a safe antibacterial agent .
基金This work was financially supported by the National Key Research and Development Program of China(Nos.2016YFA0201702 and 2016YFA0201700)the Program of Shanghai Academic/Technology Research Leader(No.20XD1433700)+2 种基金the International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality(No.20520740800)the National Natural Science Foundation of China(Nos.51733002 and 52073047)China Postdoctoral Science Foundation(Nos.2019M661323 and 2020TQ0062)。
文摘Public safety incidents caused by bacterial infections have attracted widespread attention towards antibacterial textiles(fibers,fabrics,etc.).Nevertheless,it is still challenging to efficiently load inorganic nano-antibacterial materials in polymer fibers.In this work,zirconium phosphate(ZrP,layered micro-nano materials)was utilized as a micro-nano carrier.The octadecyl triphenyl phosphonium bromide(OTP)was intercalated between the ZrP sheets by the ion exchange method to improve the carrier-polymer compatibility and the antibacterial performance.Through in-situ chemical reduction,the ultra-small nano-sized cuprous oxide(Cu_(2)O<5 nm)was loaded on the outer surface of ZrP to realize the uniform and stable dispersion of the Cu_(2)O on the carrier and improve the antibacterial performance.The ZrP nanosheets loaded with Cu_(2)O and OTP(Cu_(2)O@OZrP)had excellent antibacterial properties,and the antibacterial rate against E.coli,S.aureus and C.albicans was more than 99%.The intercalation amount of OTP in Cu_(2)O@OZrP can reach 16%,and the thermal stability was excellent and a significant increase in the Zeta potential.Indeed,the decomposition temperature was greater than 350℃,which was suitable for high-temperature melt processing of polymers.Consequently,we prepared PET/Cu_(2)O@OZrP fibers using polyethylene glycol terephthalate(PET),which accounts for 70%of the total chemical fibers,as the fiber matrix.PET/Cu_(2)O@OZrP fibers exhibited excellent mechanical property and antibacterial performance when the content of Cu_(2)O@OZrP was only 0.2%.The antibacterial rate against five types of bacteria including super bacteria(MRSA,VRE)was more than 99%.
基金supported by:Natural Science Fund of Shandong Province(No.ZR2020ME062 and ZR2021ME039)Jiangsu New Vison Advanced Functional Fiber Innovation Center+2 种基金Applied Basic Research Programs of National Textile Industry Federation(No.J202106)National Innovation Center of Advanced Dyeing and Finishing Technology(No.2022GCJJ25)XW would like to acknowledge the support from the Hong Kong Jockey Club Charities Trust and the Research Institute for Sports Science and Technology at the Hong Kong Polytechnic University(P0043811).
文摘Cellulose-based fabrics are ubiquitous in our daily lives.They are the preferred choice for bedding materials,active sportswear,and next-to-skin apparels.However,the hydrophilic and polysaccharide characteristics of cellulose materials make them vulnerable to bacterial attack and pathogen infection.The design of antibacterial cellulose fabrics has been a long-term and on-going effort.Fabrication strategies based on the construction of surface micro-/nanostructure,chemical modification,and the application of antibacterial agents have been extensively investigated by many research groups worldwide.This review systematically discusses recent research on super-hydrophobic and antibacterial cellulose fabrics,focusing on morphology construction and surface modification.First,natural surfaces showing liquid-repellent and antibacterial properties are introduced and the mechanisms behind are explained.Then,the strategies for fabricating super-hydrophobic cellulose fabrics are summarized,and the contribution of the liquid-repellent function to reducing the adhesion of live bacteria and removing dead bacteria is elucidated.Representative studies on cellulose fabrics functionalized with super-hydrophobic and antibacterial properties are discussed in detail,and their potential applications are also introduced.Finally,the challenges in achieving super-hydrophobic antibacterial cellulose fabrics are discussed,and the future research direction in this area is proposed.
基金supported by the National Natu-ral Science Foundation of China(Nos.32171340,81772343 and 81771990)the Key Medical Program of Science and Technol-ogy Development of Shanghai(No.20S31900400)the National Science Foundation of Shanghai(No.21ZR1447900).
文摘Design of artificial ligaments possessing both osteogenic activity and antibacterial effect that promotes ligament-bone healing and prevents bacterial infection in bone tunnels for anterior cruciate ligament(ACL)reconstruction remains a significant challenge.In this study,black tantalic oxide(BTO)submicro-particles with oxygen vacancies and structure defects were fabricated by using traditional white tan-talic oxide(WTO)through magnesium thermal reduction(MTR)method,and BTO was coated on polyetheretherketone(PEEK)fibers(PKF),which were woven into fabrics(PBT)as artificial ligaments.PBT with BTO coating exhibited excellent photothermal performance,which possessed not only antibac-terial effects in vitro but also anti-infective ability in vivo.PBT with optimized surface properties(e.g.,submicro-topography and hydrophilicity)not only significantly facilitated rat bone mesenchymal stem cells(BMSC)responses(e.g.,proliferation and osteogenic differentiation)in vitro but also stimulated new bone formation for ligament-bone healing in vivo.The presence of oxygen vacancies and structure de-fects in BTO did not change the surface properties and osteogenic activity of BPT while displaying an outstanding photothermal antibacterial effect.In summary,BPT with osteogenic activity and photother-mal antibacterial effect promoted bone regeneration and prevented bacterial infection,thereby promoting ligament-bone healing.Therefore,PBT would have tremendous potential as a novel artificial ligament for ACL reconstruction.
文摘This research work has been undertaken to fabricate environmentally friendly biocomposites for biomedical and household applications. Sponge-gourd fibers (SGF) obtained from Luffa cylindrica plant were chemically treated separately using 5 and 10 wt% NaOH, acetic anhydride and benzoyl chloride solutions. SGF reinforced polylactic acid (PLA) biocomposites were fabricated using melt compounding technique. Surface morphological, structural, mechanical and thermal properties, as well as antibacterial activities of raw and chemically modified SGF reinforced PLA (SGF-PLA) composites were characterized by field emission scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffractometry, universal testing method, thermogravimetry, and Kirby-Bauer agar diffusion method, respectively. Surface morphology indicates that after treatment of fibers, the interfacial adhesion between PLA and fibers is improved. X-ray diffractometry result shows that chemical treatment of fibers improves the crystallinity and exhibits new chemical bond formation in the composites. After chemical treatment, compressive strength of the composites is found to increase by 10% - 35%. The thermal stability of the treated fiber reinforced composites is also found to increase significantly. The composites have no antibacterial activities and no cytotoxic effect on non-cancer cell line. Soil burial test has confirmed that the composites are biodegradable. Benzoyl chloride treatment of fibers shows superior mechanical properties and enhances thermal stability among the composites.
基金National Natural Science Foundation of China(Grant No.52273060)Science and Technology Research Project of the Educational Commission of Hubei Province(Grant No.D20221703)provide financial support.
文摘The antibacterial polyamide 6(PA6)material has attracted great research interest due to its wide ap-plication in food packaging,biomedical fields,functional textiles,and other fields.However,it is still a challenge to prepare intrinsically antibacterial PA6 with highly efficient and durably antibacterial activity via polymerization.Herein,the antibacterial imidazolium ionic liquid of 3-carboxymethyl-1-decyl imida-zole chloride was designed and synthesized for adapting the polymerization and processing temperature of PA6.Then antibacterial PA6(PA6-IL)was synthesized through hydrolyzed ring-opening copolymeriza-tion with imidazolium at the end of the backbones.Compared to physical blending or post-modification methods,antibacterial agents as end-capping reagents of polymer backbones endowed PA6 with intrin-sic antibacterial activity.As expected,the obtained PA6-IL exhibited not just comparable physicochemical and mechanical properties to conventional PA6 but excellent antibacterial activity of low antibacterial time to 60 min and durability for 28 days.Additionally,the corresponding electrospun PA6-IL nanofi-brous membranes showed homogenous morphology and remarkable hydrophilicity of 7.7° as well as the high-efficient antibacterial activity.Melt-spun PA6-IL microfibers revealed a smooth surface as well as enhanced tensile strength and increased breaking elongation compared to those of conventional PA6.The PA6-IL microfibers also behaved with excellent antibacterial efficiency and durability.Accordingly,this work provides a feasible and straightforward strategy to prepare durably and intrinsically antibacterial PA6 materials especially PA6 fibers,which can be widely applied in the textiles field.
基金supported by a grant from the NHC Key laboratory of Enteric Pathogenic Microbiology(Jiangsu Provincial Center for Disease Control and Prevention,EM202303)Guizhou Province Science and Technology Plan Project(Grant No.QKH[2023]008)+3 种基金the Science Foundation of Jiangsu Province Health Department(ZDB2020014)National Natural Science Foundation of China(82002108)Science and Technology Program of Suzhou(SKYD2023050)Suzhou Municipal Health Commission(KJXW2023061).
文摘Acinetobacter baumannii(A.baumannii)poses a serious public health challenge due to its notorious antimicrobial resistance,particularly carbapenem-resistant A.baumannii(CRAB).In this study,we isolated a virulent phage,named P1068,from medical wastewater capable of lysing CRAB,primarily targeting the K3 capsule type.Basic characterization showed that P1068 infected the A.baumannii ZWAb014 with an optimal MOI of 1,experienced a latent period of 10 min and maintained stability over a temperature range of 4–37C and pH range of 3–10.Phylogenetic and average nucleotide identity analyses indicate that P1068 can be classified as a novel species within the genus Obolenskvirus of the Caudoviricetes class as per the most recent virus classification released by the International Committee on Taxonomy of Viruses(ICTV).Additionally,according to classical morphological classification,P1068 is identified as a T4-like phage(Myoviridae).Interestingly,we found that the tail fiber protein(TFP)of P1068 shares 74%coverage and 88.99%identity with the TFP of a T7-like phage(Podoviridae),AbKT21phiIII(NC_048142.1).This finding suggests that the TFP gene of phages may undergo horizontal transfer across different genera and morphologies.In vitro antimicrobial assays showed that P1068 exhibited antimicrobial activity against A.baumannii in both biofilm and planktonic states.In mouse models of intraperitoneal infection,P1068 phage protected mice from A.baumannii infection and significantly reduced bacterial loads in various tissues such as the brain,blood,lung,spleen,and liver compared to controls.In conclusion,this study demonstrates that phage P1068 might be a potential candidate for the treatment of carbapenem-resistant and biofilmforming A.baumannii infections,and expands the understanding of horizontal transfer of phage TFP genes.