Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare...Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.展开更多
Information about the forty nine nitraminic plastic bonded explosives(PBXs)and different nitramines were collected.Fillers of these PBXs are nitramines 1,3,5-trinitro-1,3,5-triazinane(RDX)and β-1,3,5,7-tetranitro-1,3...Information about the forty nine nitraminic plastic bonded explosives(PBXs)and different nitramines were collected.Fillers of these PBXs are nitramines 1,3,5-trinitro-1,3,5-triazinane(RDX)and β-1,3,5,7-tetranitro-1,3,5-tetrazocane(β-HMX),cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole(bicyclo-HMX,BCHMX)and e-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(e-HNIW,CL-20)which are bonded by polyfluoro-elastomers,polydimethyl-siloxane,poly-glycidyl azide,polyisobutylene,polystyrene-butadiene,poly-acrylonitrile-butadiene and hydroxyl-terminated polybutadiene in addition to a melt cast compositions based on 2,4,6-trinitrotoluene.For thirty two of these PBXs the relationships are specified and analyzed between heats of their combustion and relative explosive strengths;by means of these relationships it might be possible to estimate,which groupings in the macromolecule of binder could be liable to their primary fission in the PBXs initiation.Similarly,for forty two of these explosives,the relationships are described and analyzed between their enthalpies of formation and impact sensitivities;here is especially attention paid to PBXs filled by BCHMX.Specific rate constants from Vacuum Stability Test(VST)of four nitramines and twenty PBXs are introduced into relationships with their enthalpies of formation.Regarding to all the mentioned cases,increasing of energy content of the studied explosives leads to increase of the relative explosive strength or initiation reactivity,respectively.Exception with the opposite trend,the outputs of VST are for BCHMX,where in PBXs are matrices with the esteric plasticizers or the energetic poly-glycidyl azide.Admixture of RDX or HMX,respectively,into the BCHX PBXs gives ternary PBXs whose thermal stability,in the sense of applied VST,is higher comparing to the original binary explosives.展开更多
Nano-nitramine explosives(RDX.HMX.CL-20) are produced on a bi-directional grinding mill.The scanning electron microscope(SEM)observations show that the prepared particles are semi-spherical,and the narrow size distrib...Nano-nitramine explosives(RDX.HMX.CL-20) are produced on a bi-directional grinding mill.The scanning electron microscope(SEM)observations show that the prepared particles are semi-spherical,and the narrow size distributions are characterized using the laser particle size analyzer.Compared with the micron-sized samples,the nano-products show obvious decrease in friction and impact sensitivities.In the case of shock sensitivities,nano-products have lower values by 59.9%(RDX),56.4%(HMX),and 58.1%(CL-20),respectively.When nano-RDX and nano-HMX are used in plastic bonded explosives(PBX) as alternative materials of micron-sized particles,their shock sensitivities are significantly decreased by 24.5%(RDX) and 22.9%(HMX),and their detonation velocities are increased by about 1.7%.Therefore,it is expected to promote the application of nano-nitramine explosives in PBXs and composite modified double-based propellants(CMDBs) so that some of their properties would be improved.展开更多
3-nitro-1,2,4-triazol-5-one(NTO)is the main component of insensitive munitions(IM)formulation because of its outstanding insensitive properties.In this paper,a series of NTO/HMX-based compositeexplosives were prepared...3-nitro-1,2,4-triazol-5-one(NTO)is the main component of insensitive munitions(IM)formulation because of its outstanding insensitive properties.In this paper,a series of NTO/HMX-based compositeexplosives were prepared and characterized.The study focuses on the effect of NTO on the perfommance of the formulations,especially the safety performance.The results revealed that the mechanical sensi-tivity of fomulations was associated with NTO content,as well as the thermal conductivity,specific heat capacity and Arrhenius parameters.Then,the high amount of NTO using in formulation was proved to be helpful for NTO/HMX-based formulation to exhibit good thermal safety.Besides,by accelerating rate calorimeter(ARC)and a modified cook-off equipment,the pressure and pressure rise rate were proved as the important indicator for judging the thermal safety performance in confined spaces.Finally,the numerical simulation was used as a credible method for predicting the respond temperature of cook-off experiment.展开更多
基金supported by Wuxi HIT New Material Research Institute and China Academy of Engineering Physics。
文摘Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.
基金supported by means of the financial resources of Students Grant Projects No. SGS_2018_002 of the Faculty of Chemical Technology at the University of Pardubice
文摘Information about the forty nine nitraminic plastic bonded explosives(PBXs)and different nitramines were collected.Fillers of these PBXs are nitramines 1,3,5-trinitro-1,3,5-triazinane(RDX)and β-1,3,5,7-tetranitro-1,3,5-tetrazocane(β-HMX),cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole(bicyclo-HMX,BCHMX)and e-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(e-HNIW,CL-20)which are bonded by polyfluoro-elastomers,polydimethyl-siloxane,poly-glycidyl azide,polyisobutylene,polystyrene-butadiene,poly-acrylonitrile-butadiene and hydroxyl-terminated polybutadiene in addition to a melt cast compositions based on 2,4,6-trinitrotoluene.For thirty two of these PBXs the relationships are specified and analyzed between heats of their combustion and relative explosive strengths;by means of these relationships it might be possible to estimate,which groupings in the macromolecule of binder could be liable to their primary fission in the PBXs initiation.Similarly,for forty two of these explosives,the relationships are described and analyzed between their enthalpies of formation and impact sensitivities;here is especially attention paid to PBXs filled by BCHMX.Specific rate constants from Vacuum Stability Test(VST)of four nitramines and twenty PBXs are introduced into relationships with their enthalpies of formation.Regarding to all the mentioned cases,increasing of energy content of the studied explosives leads to increase of the relative explosive strength or initiation reactivity,respectively.Exception with the opposite trend,the outputs of VST are for BCHMX,where in PBXs are matrices with the esteric plasticizers or the energetic poly-glycidyl azide.Admixture of RDX or HMX,respectively,into the BCHX PBXs gives ternary PBXs whose thermal stability,in the sense of applied VST,is higher comparing to the original binary explosives.
文摘Nano-nitramine explosives(RDX.HMX.CL-20) are produced on a bi-directional grinding mill.The scanning electron microscope(SEM)observations show that the prepared particles are semi-spherical,and the narrow size distributions are characterized using the laser particle size analyzer.Compared with the micron-sized samples,the nano-products show obvious decrease in friction and impact sensitivities.In the case of shock sensitivities,nano-products have lower values by 59.9%(RDX),56.4%(HMX),and 58.1%(CL-20),respectively.When nano-RDX and nano-HMX are used in plastic bonded explosives(PBX) as alternative materials of micron-sized particles,their shock sensitivities are significantly decreased by 24.5%(RDX) and 22.9%(HMX),and their detonation velocities are increased by about 1.7%.Therefore,it is expected to promote the application of nano-nitramine explosives in PBXs and composite modified double-based propellants(CMDBs) so that some of their properties would be improved.
基金The authors are grateful to the National Defense Foundation of China(3090021322001,3090020221912,3090021211903.)for financial support of this work.
文摘3-nitro-1,2,4-triazol-5-one(NTO)is the main component of insensitive munitions(IM)formulation because of its outstanding insensitive properties.In this paper,a series of NTO/HMX-based compositeexplosives were prepared and characterized.The study focuses on the effect of NTO on the perfommance of the formulations,especially the safety performance.The results revealed that the mechanical sensi-tivity of fomulations was associated with NTO content,as well as the thermal conductivity,specific heat capacity and Arrhenius parameters.Then,the high amount of NTO using in formulation was proved to be helpful for NTO/HMX-based formulation to exhibit good thermal safety.Besides,by accelerating rate calorimeter(ARC)and a modified cook-off equipment,the pressure and pressure rise rate were proved as the important indicator for judging the thermal safety performance in confined spaces.Finally,the numerical simulation was used as a credible method for predicting the respond temperature of cook-off experiment.