Micrometre-sized electrode materials have distinct advantages for battery applications in terms of energy density,processability,safety and cost.For the silicon monoxide anode that undergoes electrochemical alloying r...Micrometre-sized electrode materials have distinct advantages for battery applications in terms of energy density,processability,safety and cost.For the silicon monoxide anode that undergoes electrochemical alloying reaction with Li,the Li(de)intercalation by micron-sized active particles usually accompanies with a large volume variation,which pulverizes the particle structure and leads to rapidly faded storage performance.In this work,we proposed to stabilize the electrochemistry vs.Li of the micron-SiO_(x) anode by forming a rigid-flexible bi-layer coati ng on the particle surface.The coati ng consists of pyrolysis carbon as the inner layer and polydopamine as the outer layer.While the inner layer guarantees high structural rigidity at particle surface and provides efficient pathway for electron conduction,the outer layer shows high flexibility for maintaining the integrity of micrometre-sized particles against drastic volume variation,and together they facilitate formation of stable solid electrolyte interface on the SiO_(x) particles.A composite an ode prepared by mixing the coated micron-SiOx with graphite delivered improved Li storage performance,and promised a high-capacity,long-life LiFePO_(4)/SiO_(x)-graphite pouch cell.Our strategy provides a general and feasible solution for building high-energy rechargeable batteries from micrometre-sized electrode materials with significant volume variation.展开更多
Transparent thin layer indium tin oxide was coated on polyethylene tetraphetalate (PET) substrate by means of spin coating process and its opto-electronic properties have been investigated. The surface treated by puls...Transparent thin layer indium tin oxide was coated on polyethylene tetraphetalate (PET) substrate by means of spin coating process and its opto-electronic properties have been investigated. The surface treated by pulse Nd-YAG laser. Pulse frequency, duration and energy were, 1000 Hz, 0.2 to 20 ms and 25 to 40 J respectively. The effect of treatment on crystallization, optical properties and bonding processes of the thin layer was investigated. The results show that ITO coated on flexible PET substrates is conductive and transparent. The sheet transparency for a 350 nm thickness in the visible range is more than 83.6%. Using Nd-YAG laser increased conductivity by a factor of 100 times and causes higher bonding performances.展开更多
By designing and fabricating thin film electronic devices on a flexible substrate instead of more commonly used rigid substrate, flexible electronics produced has opened a field of special applications. In this articl...By designing and fabricating thin film electronic devices on a flexible substrate instead of more commonly used rigid substrate, flexible electronics produced has opened a field of special applications. In this article, we first reviewed available products that may be used as flexible substrates, their characteristics and unique advantages as supporting material for flexible electronic devices. Secondly, flexible perovskite solar cell is examined in detail, with special focus on its potential large-scale fabrication processes. In particular, a comprehensive review is provided on low cost solution printing techniques that is viewed highly as a viable tool for potential commercialization of the perovskite solar cells. Furthermore, a summary is given on green processing for the solution printing production of flexible perovskite devices.展开更多
Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration a...Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration are highly necessary for the smart power sources-unitized electronics.Despite the great progress,the fabrication of MSCs combining high integration with high volumetric performance remains largely unsolved.Herein,we develop a simple,fast and scalable strategy to fabricate graphene based highly integrated MSCs by a new effective continuous centrifugal coating technique.Notably,the resulting highly conductive graphene films can act as not only patterned microelectrodes but also metal-free current collectors and interconnects,endowing modular MSCs with high integrity,remarkable flexibility,tailored voltage and capacitance output,and outstanding performance uniformity.More importantly,the strong centrifugal force and shear force generated in continuous centrifugal coating process lead to graphene films with high alignment,compactness and packing density,contributing to excellent volumetric capacitance of ~31.8 F cm^(-3) and volumetric energy density of ~2.8 mWh cm^(-3),exceeding most reported integrated MSCs.Therefore,our work paves a novel way for simple and scalable fabrication of integrated MSCs and offers promising opportunities as standalone microscale power sources for new-generation electronics.展开更多
Poly( glycolic acid-lactic acid)( PGLA) threadembedding material was modified by chitosan coating which could improve the rigidity,hydrophilicity and moisture absorption of the material,and produced better stimulation...Poly( glycolic acid-lactic acid)( PGLA) threadembedding material was modified by chitosan coating which could improve the rigidity,hydrophilicity and moisture absorption of the material,and produced better stimulation effect. Thus,this kind of thread-embedding materials which can be buried into acupuncture points to produce a long-time stimulation is popular in the acupuncture and moxibustion therapies. The variation tendencies of diameter,weight, hydrophilicity, and flexibility of the samples under the change of chitosan coating concentration,coating time and coating times were studied respectively. The results showed that the hydrophilicity,weight,and rigidity after coating rose in a certain range with the increase of coating time,coating times and coating concentration. The coating time had little influence on the diameter of fiber.展开更多
The friction and wear properties of the nylon coating,prepared by hot-extrusion, used to protect the surface of the flexible continuous sucker rod were studied by using a pin-on-disc wear tester in the simulated oil w...The friction and wear properties of the nylon coating,prepared by hot-extrusion, used to protect the surface of the flexible continuous sucker rod were studied by using a pin-on-disc wear tester in the simulated oil well environment.The effects of sliding speed and load were considered.The wear mechanism was also studied by using a scanning electron microscope (SEM).The result shows that the friction coefficients of both kinds of materials,JKPA and ZZ7024B,used to protect the surface of the flexible continuous sucker rod decrease with sliding speed increase,but change little with load increase in the simulated oil well environment.The value of friction coefficient of ZZ7024B is smaller than that of JKPA.The minimum value of friction coefficient of ZZ7024B is about 0.05.The wear volume of ZZ7024B is smaller than that of JKPA under the same conditions of experimentation.展开更多
Simultaneous realization of superior mechanical and antifouling properties is critical for a coating. The use of stereoscopic polysiloxanes in place of linear polysiloxanes to fabricate antifouling coatings can combin...Simultaneous realization of superior mechanical and antifouling properties is critical for a coating. The use of stereoscopic polysiloxanes in place of linear polysiloxanes to fabricate antifouling coatings can combine properties of organic and inorganic materials, i.e., they can exhibit both high hardness and wear resistance from inorganic components as well as the flexibility and tunability from organic components. This strategy is used to prepare hard yet flexible antifouling coatings or polymer-ceramic hybrid antifouling coatings. In this mini-review, we report the recent advances in this field. Particularly, the effects of stereoscopic polysiloxane structures on their mechanical and antifouling properties are discussed in detail.展开更多
The slot-die coating is recognized as the most compatible method for the roll-to-roll(R2R)processing of large-area flexible organic solar cells(OSCs).However,the photovoltaic performance of the large-area flexible all...The slot-die coating is recognized as the most compatible method for the roll-to-roll(R2R)processing of large-area flexible organic solar cells(OSCs).However,the photovoltaic performance of the large-area flexible all-polymer solar cells was significantly lagging behind that of polymer donors with small molecule non-fullerene acceptors devices.In this work,the 1 cm^(2) flexible device of an all-polymer system,PTQ10:PYF-T-o,fabricated by slot-die coating,achieves an excellent efficiency of 11.24%via controlling the coating temperatures.It is found that,compared with the donor,the crystallinity of PYF-T-o plays a crucial role in device performance.The all-polymer flexible devices show superior mechanical bending stability,maintaining an efficiency of over 95%of the initial value during a 1000-cycle bending test.展开更多
基金supported by the Innovation Team for R&D and Industrialization of High Energy Density Si-based Power batteries (2018607219003)the Basic Science Center Project of National Natural Science Foundation of China (51788104)+2 种基金the National Key R&D Program of China (2019YFA0705600)the “Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21070300).
文摘Micrometre-sized electrode materials have distinct advantages for battery applications in terms of energy density,processability,safety and cost.For the silicon monoxide anode that undergoes electrochemical alloying reaction with Li,the Li(de)intercalation by micron-sized active particles usually accompanies with a large volume variation,which pulverizes the particle structure and leads to rapidly faded storage performance.In this work,we proposed to stabilize the electrochemistry vs.Li of the micron-SiO_(x) anode by forming a rigid-flexible bi-layer coati ng on the particle surface.The coati ng consists of pyrolysis carbon as the inner layer and polydopamine as the outer layer.While the inner layer guarantees high structural rigidity at particle surface and provides efficient pathway for electron conduction,the outer layer shows high flexibility for maintaining the integrity of micrometre-sized particles against drastic volume variation,and together they facilitate formation of stable solid electrolyte interface on the SiO_(x) particles.A composite an ode prepared by mixing the coated micron-SiOx with graphite delivered improved Li storage performance,and promised a high-capacity,long-life LiFePO_(4)/SiO_(x)-graphite pouch cell.Our strategy provides a general and feasible solution for building high-energy rechargeable batteries from micrometre-sized electrode materials with significant volume variation.
文摘Transparent thin layer indium tin oxide was coated on polyethylene tetraphetalate (PET) substrate by means of spin coating process and its opto-electronic properties have been investigated. The surface treated by pulse Nd-YAG laser. Pulse frequency, duration and energy were, 1000 Hz, 0.2 to 20 ms and 25 to 40 J respectively. The effect of treatment on crystallization, optical properties and bonding processes of the thin layer was investigated. The results show that ITO coated on flexible PET substrates is conductive and transparent. The sheet transparency for a 350 nm thickness in the visible range is more than 83.6%. Using Nd-YAG laser increased conductivity by a factor of 100 times and causes higher bonding performances.
基金the financial support of the National Key Research and Development Project funding from the Ministry of Science and Technology of China(Grants Nos.2016YFA0202400and 2016YFA0202404)the Peacock Team Project funding from Shenzhen Science and Technology Innovation Committee(Grant No.KQTD2015033110182370)
文摘By designing and fabricating thin film electronic devices on a flexible substrate instead of more commonly used rigid substrate, flexible electronics produced has opened a field of special applications. In this article, we first reviewed available products that may be used as flexible substrates, their characteristics and unique advantages as supporting material for flexible electronic devices. Secondly, flexible perovskite solar cell is examined in detail, with special focus on its potential large-scale fabrication processes. In particular, a comprehensive review is provided on low cost solution printing techniques that is viewed highly as a viable tool for potential commercialization of the perovskite solar cells. Furthermore, a summary is given on green processing for the solution printing production of flexible perovskite devices.
基金financially supported by the National Key R&D Program of China (Grants 2016YFB0100100, 2016YFA0200200)the National Natural Science Foundation of China (Grants 51702078, 51572259, and 51872283)+4 种基金Natural Science Foundation of Liaoning ProvinceJoint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (Grant 20180510038)Liao Ning Revitalization Talents Program (Grant XLYC1807153), DICP (DICP ZZBS201708, DICP ZZBS201802)DICP&QIBEBT (Grant DICP&QIBEBT UN201702)Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL180310, DNL180308, DNL201912, and DNL201915)。
文摘Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration are highly necessary for the smart power sources-unitized electronics.Despite the great progress,the fabrication of MSCs combining high integration with high volumetric performance remains largely unsolved.Herein,we develop a simple,fast and scalable strategy to fabricate graphene based highly integrated MSCs by a new effective continuous centrifugal coating technique.Notably,the resulting highly conductive graphene films can act as not only patterned microelectrodes but also metal-free current collectors and interconnects,endowing modular MSCs with high integrity,remarkable flexibility,tailored voltage and capacitance output,and outstanding performance uniformity.More importantly,the strong centrifugal force and shear force generated in continuous centrifugal coating process lead to graphene films with high alignment,compactness and packing density,contributing to excellent volumetric capacitance of ~31.8 F cm^(-3) and volumetric energy density of ~2.8 mWh cm^(-3),exceeding most reported integrated MSCs.Therefore,our work paves a novel way for simple and scalable fabrication of integrated MSCs and offers promising opportunities as standalone microscale power sources for new-generation electronics.
基金Biomedical Textile Materials Science and Technology(111 Project),China(No.B07024)
文摘Poly( glycolic acid-lactic acid)( PGLA) threadembedding material was modified by chitosan coating which could improve the rigidity,hydrophilicity and moisture absorption of the material,and produced better stimulation effect. Thus,this kind of thread-embedding materials which can be buried into acupuncture points to produce a long-time stimulation is popular in the acupuncture and moxibustion therapies. The variation tendencies of diameter,weight, hydrophilicity, and flexibility of the samples under the change of chitosan coating concentration,coating time and coating times were studied respectively. The results showed that the hydrophilicity,weight,and rigidity after coating rose in a certain range with the increase of coating time,coating times and coating concentration. The coating time had little influence on the diameter of fiber.
基金FundedbyKeyScientificandTechnologicalProjectofWuhan (No .9910 0 2 0 36G)
文摘The friction and wear properties of the nylon coating,prepared by hot-extrusion, used to protect the surface of the flexible continuous sucker rod were studied by using a pin-on-disc wear tester in the simulated oil well environment.The effects of sliding speed and load were considered.The wear mechanism was also studied by using a scanning electron microscope (SEM).The result shows that the friction coefficients of both kinds of materials,JKPA and ZZ7024B,used to protect the surface of the flexible continuous sucker rod decrease with sliding speed increase,but change little with load increase in the simulated oil well environment.The value of friction coefficient of ZZ7024B is smaller than that of JKPA.The minimum value of friction coefficient of ZZ7024B is about 0.05.The wear volume of ZZ7024B is smaller than that of JKPA under the same conditions of experimentation.
基金supported by the National Natural Science Foundation of China(Nos.52273073,U2241286 and 52003082)National Key Research and Development Program of China(No.2022YFB3806403)Fundamental Research Funds for the Central Universities.
文摘Simultaneous realization of superior mechanical and antifouling properties is critical for a coating. The use of stereoscopic polysiloxanes in place of linear polysiloxanes to fabricate antifouling coatings can combine properties of organic and inorganic materials, i.e., they can exhibit both high hardness and wear resistance from inorganic components as well as the flexibility and tunability from organic components. This strategy is used to prepare hard yet flexible antifouling coatings or polymer-ceramic hybrid antifouling coatings. In this mini-review, we report the recent advances in this field. Particularly, the effects of stereoscopic polysiloxane structures on their mechanical and antifouling properties are discussed in detail.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.52073068,22135001,and 21721002)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB36000000).
文摘The slot-die coating is recognized as the most compatible method for the roll-to-roll(R2R)processing of large-area flexible organic solar cells(OSCs).However,the photovoltaic performance of the large-area flexible all-polymer solar cells was significantly lagging behind that of polymer donors with small molecule non-fullerene acceptors devices.In this work,the 1 cm^(2) flexible device of an all-polymer system,PTQ10:PYF-T-o,fabricated by slot-die coating,achieves an excellent efficiency of 11.24%via controlling the coating temperatures.It is found that,compared with the donor,the crystallinity of PYF-T-o plays a crucial role in device performance.The all-polymer flexible devices show superior mechanical bending stability,maintaining an efficiency of over 95%of the initial value during a 1000-cycle bending test.