In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loo...In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.展开更多
We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave ...We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.展开更多
This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this m...This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.展开更多
We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated het...We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated heteroclinic structure of instability unveils all possible dynamic trajectories of nonlinear waves.Significantly,the latticed-Fermi-Pasta-Ulam recurrences on the modulated-wave background in NLSE are also investigated and their dynamic trajectories run along the Hamiltonian contours of the heteroclinic structure.It is demonstrated that there has much richer dynamic behavior,in contrast to the nonlinear waves reported before.This novel nonlinear wave promises to inject new vitality into the study of MI.展开更多
The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structur...The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.展开更多
Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of ...Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.展开更多
A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigat...A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effectsof three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, andimp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid toenter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on thereflux liquid becomes more obvious as the setting distance of the reflux aperture decreases. (2) The position ofthe reflux hole significantly affects the gas phase mass fraction inside the impeller, resulting in a significant reductionin the time it takes for the mass fraction to exceed 80%. (3) The position of the reflux hole significantly affectsthe average pressure on each monitoring surface. (4) Placing the reflux hole at a excessively distant radial distancecan result in an excessive vertical component. (5) The self-priming performance of the pump can be improved tosome extent by placing the return hole at a small radial distance.展开更多
BACKGROUND Gastro-esophageal reflux disease(GERD)may affect the upper digestive tract;up to 20%of population in Western nations are affected by GERD.Antacids,histamine H2-receptor antagonists,and Proton Pump Inhibitor...BACKGROUND Gastro-esophageal reflux disease(GERD)may affect the upper digestive tract;up to 20%of population in Western nations are affected by GERD.Antacids,histamine H2-receptor antagonists,and Proton Pump Inhibitors(PPIs)are considered the referring medications for GERD.Nevertheless,PPIs must be managed carefully because their use,especially chronic,could be linked with some adverse effects.An effective and safe alternative pharmacological tool for GERD is needed.After the identification of potentially new medications to flank PPIs,it is mandatory to revise and improve good clinical practices even through a consensus process.AIM To optimize diagnosis and treatment guidelines for GERD through a consensus based on Delphi method.METHODS The availability of clinical studies describing the action of the multicomponent/multitarget medication Nux vomica-Heel,subject of the consensus,is the basic prerequisite for the consensus itself.A modified Delphi process was used to reach a consensus among a panel of Italian GERD specialists on the overlapping approach PPIs/Nux vomica-Heel as a new intervention model for the management of GERD.The Voting Consensus group was composed of 49 Italian Medical Doctors with different specializations:Gastroenterology,otolaryngology,geriatrics,and general medicine.A scientific committee analyzed the literature,determined areas that required investigation(in agreement with the multiple-choice questionnaire results),and identified two topics of interest:(1)GERD disease;and(2)GERD treatment.Statements for each of these topics were then formulated and validated.The Delphi process involved two rounds of questioning submitted to the panel experts using an online platform.RESULTS According to their routinary GERD practice and current clinical evidence,the panel members provided feedback to each questionnaire statement.The experts evaluated 15 statements and reached consensus on all 15.The statements regarding the GERD disease showed high levels of agreement,with consensus ranging from 70%to 92%.The statements regarding the GERD treatment also showed very high levels of agreement,with consensus ranging from 90%to 100%.This Delphi process was able to reach consensus among physicians in relevant aspects of GERD management,such as the adoption of a new approach to treat patients with GERD based on the overlapping between PPIs and Nux vomica-Heel.The consensus was unanimous among the physicians with different specializations,underlying the uniqueness of the agreement reached to identify in the overlapping approach between PPIs and Nux vomica-Heel a new intervention model for GERD management.The results support that an effective approach to deprescribe PPIs through a progressive decalage timetable(reducing PPIs administration to as-needed use),should be considered.CONCLUSION Nux vomica-Heel appears to be a valid opportunity for GERD treatment to favor the deprescription of PPIs and to maintain low disease activity together with the symptomatology remission.展开更多
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second...To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.展开更多
In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in...In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in groundwater-source heat pump systems.To investigate this,a series of seepage experiments was conducted under in situ stress conditions using unconsolidated sandstone samples with varying grain compositions.The clogging phenomenon arises from the combined effects of grain migration and compaction,wherein the migration of both original and secondary crushed fine-grain particles blocks the seepage channels.Notably,grain composition influences the migration and transport properties of the grains.For samples composed of smaller grains,the apparent permeability demonstrates a transition from stability to decrease.In contrast,samples with larger grains experience a skip at the stability stage and directly enter the decrease stage,with a minor exception of a slight increase observed.Furthermore,a unique failure mode characterized by diameter shrinkage in the upper part of the sample is observed due to the combined effects of grain migration and in situ stress-induced compaction.These testing results contribute to a better understanding of the clogging mechanism caused by the coupled effects of grain migration and compaction during groundwater recharge in unconsolidated sandstone reservoirs used in groundwater-source heat pump systems.展开更多
Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency ...Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately.展开更多
Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units....Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals.展开更多
The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristi...The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance.展开更多
As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in pra...As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.展开更多
Objective: To explore the clinical effectiveness of combined use of intravenous pain pump with Parecoxib injection in alleviating pain in patients during the early postoperative period after thoracoscopic surgery. Met...Objective: To explore the clinical effectiveness of combined use of intravenous pain pump with Parecoxib injection in alleviating pain in patients during the early postoperative period after thoracoscopic surgery. Methods: Eighty patients who underwent thoracoscopic surgery in a tertiary hospital were selected as the study subjects and randomly divided into two groups, with 40 patients in each group. The control group received routine postoperative treatment with intravenous pain pump, while the experimental group received Parecoxib in addition to the standard postoperative pain pump treatment. Visual Analog Scale (VAS) pain scores were used to evaluate postoperative pain relief in both groups, along with adverse reactions, postoperative complications, and patient satisfaction with pain relief. Results: Patients who received Parecoxib injection in addition to the routine use of intravenous pain pump had VAS pain scores lower than 3 points at 6 h, 12 h, 24 h, and 36 h postoperatively compared to those in the control group. The incidence of postoperative lung collapse, pleural effusion, and pulmonary infections was also significantly lower in the experimental group. The differences between the two groups were statistically significant (P Conclusion: Early combined use of Parecoxib injection in the early postoperative period after thoracoscopic surgery has shown good clinical efficacy. It can reduce the level of pain in patients, promote effective coughing and expectoration, facilitate early mobilization of patients, improve patient compliance, reduce complications, shorten hospital stay, and expedite patient recovery. Therefore, it is worth promoting the widespread clinical application of Parecoxib injection in this setting.展开更多
The performance of a newly designed tri-lobe industrial lobe pump of high capacity is simulated by using commercial CFD solver Ansys Fluent. A combination of user-defined-functions and meshing strategies is employed t...The performance of a newly designed tri-lobe industrial lobe pump of high capacity is simulated by using commercial CFD solver Ansys Fluent. A combination of user-defined-functions and meshing strategies is employed to capture the rotation of the lobes. The numerical model is validated by comparing the simulated results with the literature values. The processes of suction, displacement, compression and exhaust are accurately captured in the transient simulation. The fluid pressure value remains in the range of inlet pressure value till the processes of suction and displacement are over. The instantaneous process of compression is accurately captured in the simulation. The movement of a particular working chamber is traced along the gradual degree of lobe’s rotation. At five different degrees of lobe’s rotation, pressure contour plots are reported which clearly shows the pressure values inside the working chamber. Each pressure value inside the working chamber conforms to the particular process in which the working chamber is operating. Finally, the power requirement at the shaft of rotation is estimated from the simulated values. The estimated value of power requirement is 3.61 BHP FHP whereas the same calculated theoretically is 3 BHP FHP. The discrepancy is attributed to the assumption of symmetry of blower along the thickness.展开更多
Background: Elastomeric pumps (elastic balls into which analgesics or antibiotics can be inserted) push medicines through a catheter to a nerve or blood vessel. Since elastomeric pumps are small and need no power sour...Background: Elastomeric pumps (elastic balls into which analgesics or antibiotics can be inserted) push medicines through a catheter to a nerve or blood vessel. Since elastomeric pumps are small and need no power source, they fit easily into a pocket during infusion, allowing patient mobility. Elastomeric pumps are widely used and widely studied experimentally, but they have well-known problems, such as maintaining reliable flow rates and avoiding toxicity or other peak-and-trough effects. Objectives: Our research objective is to develop a realistic theoretical model of an elastomeric pump, analyze its flow rates, determine its toxicity conditions, and otherwise improve its operation. We believe this is the first such theoretical model of an elastomeric pump consisting of an elastic, medicine-filled ball attached to a horizontal catheter. Method: Our method is to model the system as a quasi-Poiseuille flow driven by the pressure drop generated by the elastic sphere. We construct an engineering model of the pressure exerted by an elastic sphere and match it to a solution of the one-dimensional radial Navier-Stokes equation that describes flow through a horizontal, cylindrical tube. Results: Our results are that the model accurately reproduces flow rates obtained in clinical studies. We also discover that the flow rate has an unavoidable maximum, which we call the “toxicity bump”, when the radius of the sphere approaches its terminal, unstretched value—an effect that has been observed experimentally. Conclusions: We conclude that by choosing the properties of an elastomeric pump, the toxicity bump can be restricted to less than 10% of the earlier, relatively constant flow rate. Our model also produces a relation between the length of time that the analgesic fluid infuses and the physical properties of the fluid, of the elastomeric sphere and the tube, and of the blood vessel into which the analgesic infuses. From these, we conclude that elastomeric pumps can be designed, using our simple model, to control infusion times while avoiding toxicity effects.展开更多
The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to anal...The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles.展开更多
The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbin...The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip.The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences.This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation,which need to be analyzed and understood.This study constructed transient flow and rotational speed mathematical models under various degrees of rotor seizure using the test data collected from a dedicated transient rotor seizure test system.Then,bidirectional fluid-solid coupling simulations were conducted to investigate the flow evolution mechanism.It is found that the influence of the impeller structure size and transient braking acceleration on the unsteady head(Hu)is dominant in rotor seizure accident events.Moreover,the present results also show that the rotational acceleration additional head(Hu1)is much higher than the instantaneous head(Hu2).展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62274189the Natural Science Foundation of Guangdong Province,China,under Grant 2022A1515011054the Key Area R&D Program of Guangdong Province under Grant 2022B0701180001.
文摘In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.
基金Nanjing University of Posts and Telecommunications Foundation(Grant Nos.JUH219002 and JUH219007)Key Laboratory of Functional Crystals and Laser Technology,TIPC,CAS Foundation(Grant No.FCLT 202201)。
文摘We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.
基金Funding by Ministerium für Wirtschaft,Innovation,Digitalisierung und Energie des Landes Nordrhein-Westfalen。
文摘This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.
基金Project supported by the National Natural Science Foundation of China(NSFC)(Grant No.12004309)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSQ036)the Scientific Research Program funded by Shaanxi Provincial Education Department(Grant No.20JK0947).
文摘We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated heteroclinic structure of instability unveils all possible dynamic trajectories of nonlinear waves.Significantly,the latticed-Fermi-Pasta-Ulam recurrences on the modulated-wave background in NLSE are also investigated and their dynamic trajectories run along the Hamiltonian contours of the heteroclinic structure.It is demonstrated that there has much richer dynamic behavior,in contrast to the nonlinear waves reported before.This novel nonlinear wave promises to inject new vitality into the study of MI.
基金National Key Research and De-velopment Program of China(Grant No.2023YFA1406603)the National Natural Science Foundation of China(Grant Nos.52071079,12274071,12374112,and T2394473)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB491).
文摘The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.
基金supported by a Grant(2024-MOIS35-005)of Policy-linked Technology Development Program on Natural Disaster Prevention and Mitigation funded by Ministry of Interior and Safety(MOIS,Korea).
文摘Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.
基金the National Natural Science Foundation of China(Research Project No.52169018).
文摘A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effectsof three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, andimp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid toenter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on thereflux liquid becomes more obvious as the setting distance of the reflux aperture decreases. (2) The position ofthe reflux hole significantly affects the gas phase mass fraction inside the impeller, resulting in a significant reductionin the time it takes for the mass fraction to exceed 80%. (3) The position of the reflux hole significantly affectsthe average pressure on each monitoring surface. (4) Placing the reflux hole at a excessively distant radial distancecan result in an excessive vertical component. (5) The self-priming performance of the pump can be improved tosome extent by placing the return hole at a small radial distance.
文摘BACKGROUND Gastro-esophageal reflux disease(GERD)may affect the upper digestive tract;up to 20%of population in Western nations are affected by GERD.Antacids,histamine H2-receptor antagonists,and Proton Pump Inhibitors(PPIs)are considered the referring medications for GERD.Nevertheless,PPIs must be managed carefully because their use,especially chronic,could be linked with some adverse effects.An effective and safe alternative pharmacological tool for GERD is needed.After the identification of potentially new medications to flank PPIs,it is mandatory to revise and improve good clinical practices even through a consensus process.AIM To optimize diagnosis and treatment guidelines for GERD through a consensus based on Delphi method.METHODS The availability of clinical studies describing the action of the multicomponent/multitarget medication Nux vomica-Heel,subject of the consensus,is the basic prerequisite for the consensus itself.A modified Delphi process was used to reach a consensus among a panel of Italian GERD specialists on the overlapping approach PPIs/Nux vomica-Heel as a new intervention model for the management of GERD.The Voting Consensus group was composed of 49 Italian Medical Doctors with different specializations:Gastroenterology,otolaryngology,geriatrics,and general medicine.A scientific committee analyzed the literature,determined areas that required investigation(in agreement with the multiple-choice questionnaire results),and identified two topics of interest:(1)GERD disease;and(2)GERD treatment.Statements for each of these topics were then formulated and validated.The Delphi process involved two rounds of questioning submitted to the panel experts using an online platform.RESULTS According to their routinary GERD practice and current clinical evidence,the panel members provided feedback to each questionnaire statement.The experts evaluated 15 statements and reached consensus on all 15.The statements regarding the GERD disease showed high levels of agreement,with consensus ranging from 70%to 92%.The statements regarding the GERD treatment also showed very high levels of agreement,with consensus ranging from 90%to 100%.This Delphi process was able to reach consensus among physicians in relevant aspects of GERD management,such as the adoption of a new approach to treat patients with GERD based on the overlapping between PPIs and Nux vomica-Heel.The consensus was unanimous among the physicians with different specializations,underlying the uniqueness of the agreement reached to identify in the overlapping approach between PPIs and Nux vomica-Heel a new intervention model for GERD management.The results support that an effective approach to deprescribe PPIs through a progressive decalage timetable(reducing PPIs administration to as-needed use),should be considered.CONCLUSION Nux vomica-Heel appears to be a valid opportunity for GERD treatment to favor the deprescription of PPIs and to maintain low disease activity together with the symptomatology remission.
基金National Key R&D Program of China(Grant No.2020YFC1512404).
文摘To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0137200)National Natural Science Foundation of China(Grant Nos.52309147 and 52179114).
文摘In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in groundwater-source heat pump systems.To investigate this,a series of seepage experiments was conducted under in situ stress conditions using unconsolidated sandstone samples with varying grain compositions.The clogging phenomenon arises from the combined effects of grain migration and compaction,wherein the migration of both original and secondary crushed fine-grain particles blocks the seepage channels.Notably,grain composition influences the migration and transport properties of the grains.For samples composed of smaller grains,the apparent permeability demonstrates a transition from stability to decrease.In contrast,samples with larger grains experience a skip at the stability stage and directly enter the decrease stage,with a minor exception of a slight increase observed.Furthermore,a unique failure mode characterized by diameter shrinkage in the upper part of the sample is observed due to the combined effects of grain migration and in situ stress-induced compaction.These testing results contribute to a better understanding of the clogging mechanism caused by the coupled effects of grain migration and compaction during groundwater recharge in unconsolidated sandstone reservoirs used in groundwater-source heat pump systems.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2022C03170)Science and Technology Project of Quzhou(Grant No.2022K98)Hunan Province Key Field R&D Plan Project(Grant No.2022GK2068).
文摘Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately.
基金the support of the National Natural Science Foundation of China(52372368)。
文摘Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals.
基金financially supported by the China Postdoctoral Science Foundation(Grant No.2023M732979 and No.2022TQ0127)the Cooperative Research Project of the Ministry of Education's "Chunhui Program"(Grant No.HZKY20220117)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20220587)the National Natural Science Foundation of China(Grant No.52309112)。
文摘The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance.
基金supported by the National Natural Science Foundation of China(Nos.51922023,61874011)Fundamental Research Funds for the Central Universities(E1EG6804)
文摘As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.
文摘Objective: To explore the clinical effectiveness of combined use of intravenous pain pump with Parecoxib injection in alleviating pain in patients during the early postoperative period after thoracoscopic surgery. Methods: Eighty patients who underwent thoracoscopic surgery in a tertiary hospital were selected as the study subjects and randomly divided into two groups, with 40 patients in each group. The control group received routine postoperative treatment with intravenous pain pump, while the experimental group received Parecoxib in addition to the standard postoperative pain pump treatment. Visual Analog Scale (VAS) pain scores were used to evaluate postoperative pain relief in both groups, along with adverse reactions, postoperative complications, and patient satisfaction with pain relief. Results: Patients who received Parecoxib injection in addition to the routine use of intravenous pain pump had VAS pain scores lower than 3 points at 6 h, 12 h, 24 h, and 36 h postoperatively compared to those in the control group. The incidence of postoperative lung collapse, pleural effusion, and pulmonary infections was also significantly lower in the experimental group. The differences between the two groups were statistically significant (P Conclusion: Early combined use of Parecoxib injection in the early postoperative period after thoracoscopic surgery has shown good clinical efficacy. It can reduce the level of pain in patients, promote effective coughing and expectoration, facilitate early mobilization of patients, improve patient compliance, reduce complications, shorten hospital stay, and expedite patient recovery. Therefore, it is worth promoting the widespread clinical application of Parecoxib injection in this setting.
文摘The performance of a newly designed tri-lobe industrial lobe pump of high capacity is simulated by using commercial CFD solver Ansys Fluent. A combination of user-defined-functions and meshing strategies is employed to capture the rotation of the lobes. The numerical model is validated by comparing the simulated results with the literature values. The processes of suction, displacement, compression and exhaust are accurately captured in the transient simulation. The fluid pressure value remains in the range of inlet pressure value till the processes of suction and displacement are over. The instantaneous process of compression is accurately captured in the simulation. The movement of a particular working chamber is traced along the gradual degree of lobe’s rotation. At five different degrees of lobe’s rotation, pressure contour plots are reported which clearly shows the pressure values inside the working chamber. Each pressure value inside the working chamber conforms to the particular process in which the working chamber is operating. Finally, the power requirement at the shaft of rotation is estimated from the simulated values. The estimated value of power requirement is 3.61 BHP FHP whereas the same calculated theoretically is 3 BHP FHP. The discrepancy is attributed to the assumption of symmetry of blower along the thickness.
文摘Background: Elastomeric pumps (elastic balls into which analgesics or antibiotics can be inserted) push medicines through a catheter to a nerve or blood vessel. Since elastomeric pumps are small and need no power source, they fit easily into a pocket during infusion, allowing patient mobility. Elastomeric pumps are widely used and widely studied experimentally, but they have well-known problems, such as maintaining reliable flow rates and avoiding toxicity or other peak-and-trough effects. Objectives: Our research objective is to develop a realistic theoretical model of an elastomeric pump, analyze its flow rates, determine its toxicity conditions, and otherwise improve its operation. We believe this is the first such theoretical model of an elastomeric pump consisting of an elastic, medicine-filled ball attached to a horizontal catheter. Method: Our method is to model the system as a quasi-Poiseuille flow driven by the pressure drop generated by the elastic sphere. We construct an engineering model of the pressure exerted by an elastic sphere and match it to a solution of the one-dimensional radial Navier-Stokes equation that describes flow through a horizontal, cylindrical tube. Results: Our results are that the model accurately reproduces flow rates obtained in clinical studies. We also discover that the flow rate has an unavoidable maximum, which we call the “toxicity bump”, when the radius of the sphere approaches its terminal, unstretched value—an effect that has been observed experimentally. Conclusions: We conclude that by choosing the properties of an elastomeric pump, the toxicity bump can be restricted to less than 10% of the earlier, relatively constant flow rate. Our model also produces a relation between the length of time that the analgesic fluid infuses and the physical properties of the fluid, of the elastomeric sphere and the tube, and of the blood vessel into which the analgesic infuses. From these, we conclude that elastomeric pumps can be designed, using our simple model, to control infusion times while avoiding toxicity effects.
文摘The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles.
基金National Natural Science Foundation Joint Fund Key Project(U20A20292)Task Book for Shandong Provincial Science and Technology Small and Medium-Sized Enterprise Innovation Capability Enhancement Engineering Project(2023TSGC0005).
文摘The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip.The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences.This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation,which need to be analyzed and understood.This study constructed transient flow and rotational speed mathematical models under various degrees of rotor seizure using the test data collected from a dedicated transient rotor seizure test system.Then,bidirectional fluid-solid coupling simulations were conducted to investigate the flow evolution mechanism.It is found that the influence of the impeller structure size and transient braking acceleration on the unsteady head(Hu)is dominant in rotor seizure accident events.Moreover,the present results also show that the rotational acceleration additional head(Hu1)is much higher than the instantaneous head(Hu2).
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.