期刊文献+
共找到1,261篇文章
< 1 2 64 >
每页显示 20 50 100
Experiment on acoustic emission response and damage evolution characteristics of polymer-modified cemented paste backfill under uniaxial compression 被引量:1
1
作者 Shenyang Ouyang Yanli Huang +5 位作者 Nan Zhou Ming Li Xiaotong Li Junmeng Li Fei Ke Yahui Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1502-1514,共13页
The mechanical properties of cemented paste backfill(CPB)determine its control effect on the goaf roof.In this study,the mechanical strength of polymer-modified cemented paste backfill(PCPB)samples was tested by uniax... The mechanical properties of cemented paste backfill(CPB)determine its control effect on the goaf roof.In this study,the mechanical strength of polymer-modified cemented paste backfill(PCPB)samples was tested by uniaxial compression tests,and the failure characteristics of PCPB under the compression were analyzed.Besides,acoustic emission(AE)technology was used to monitor and record the cracking process of the PCPB sample with a curing age of 28 d,and two AE indexes(rise angle and average frequency)were used to classify the failure modes of samples under different loading processes.The results show that waterborne epoxy resin can significantly enhance the mechanical strength of PCPB samples(when the mass ratio of polymer to powder material is 0.30,the strength of PCPB samples with a curing age of 28 d is increased by 102.6%);with the increase of polymer content,the mechanical strength of PCPB samples is improved significantly in the early and middle period of curing.Under uniaxial load,the macro cracks of PCPB samples are mostly generated along the axial direction,the main crack runs through the sample,and a large number of small cracks are distributed around the main crack.The AE response of PCPB samples during the whole loading process can be divided into four periods:quiet period,slow growth period,rapid growth period,and remission period,corresponding to the micro-pore compaction stage,elastic deformation stage,plastic deformation stage,and failure instability stage of the stress-strain curve.The AE events are mainly concentrated in the plastic deformation stage;both shear failure and tensile failure occur in the above four stages,while tensile failure is dominant for PCPB samples.This study provides a reference for the safety of coal pillar recovery in pillar goaf. 展开更多
关键词 POLYMER cemented paste backfill mechanical strength acoustic emission
下载PDF
Using cemented paste backfill to tackle the phosphogypsum stockpile in China:A down-to-earth technology with new vitalities in pollutant retention and CO_(2) abatement 被引量:2
2
作者 Yikai Liu Yunmin Wang Qiusong Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1480-1499,共20页
Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already w... Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already widespread worldwide and requires careful stewardship.In this study,we review the presence of potentially toxic elements(PTEs)in PG and describe their associations with soil properties,anthropogenic activities,and surrounding organisms.Then,we review different ex-/in-situ solutions for promoting the sustainable management of PG,with an emphasis on in-situ cemented paste backfill,which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG.However,concerns related to the PTEs'retention capacity and long-term effectiveness limit the implementation of this strategy.Furthermore,given that the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO_(2) emissions,the technology has recently undergone additional scrutiny to meet the climate mitigation ambition of the Paris Agreement and China's Carbon Neutrality Economy.Therefore,we discuss the ways by which we can integrate innovative strategies,including supplementary cementitious materials,alternative binder solutions,CO_(2) mineralization,CO_(2) curing,and optimization of the supply chain for the profitability and sustainability of PG remediation.However,to maximize the co-benefits in environmental,social,and economic,future research must bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs. 展开更多
关键词 cemented paste backfill PHOSPHOGYPSUM carbon dioxide mitigation potentially toxic elements solidification and stabilization
下载PDF
Experimental research and numerical simulation of the multi-field performance of cemented paste backfill:Review and future perspectives 被引量:6
3
作者 Yong Wang Zhenqi Wang +4 位作者 Aixiang Wu Liang Wang Qing Na Chen Cao Gangfeng Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期193-208,共16页
Cemented paste backfill(CPB)technology is a green mining method used to control underground goaves and tailings ponds.The curing process of CPB in the stope is the product of a thermo-hydro-mechanical-chemical multi-f... Cemented paste backfill(CPB)technology is a green mining method used to control underground goaves and tailings ponds.The curing process of CPB in the stope is the product of a thermo-hydro-mechanical-chemical multi-field performance interaction.At present,research on the multi-field performance of CPB mainly includes indoor similar simulation experiments,in-situ multi-field performance monitoring experiments,multi-field performance coupling model construction of CPB,and numerical simulation of the multi-field performance of CPB.Because it is hard to study the in-situ multi-field performance of CPB in the real stope,most current research on in-situ multi-field performance adopts the numerical simulation method.By simulating the conditions of CPB in the real stope(e.g.,maintenance environment,stope geometry,drainage conditions,and barricade and backfilling rates),the multi-field performance of CPB is further studied.This paper summarizes the mathematical models employed in the numerical simulation and lists the engineering application cases of numerical simulation in the in-situ multi-field performance of CPB.Finally,it proposes that the multi-field performance of CPB needs to strengthen the theoretical study of multi-field performance,form the strength design criterion based on the multi-field performance of CPB,perform a full-range numerical simulation of the multi-field performance of CPB,develop a pre-warning technology for the CPB safety of CPB,develop automatic and wireless sensors for the multi-field performance monitoring of CPB,and realize the application and popularization of CPB monitoring technology. 展开更多
关键词 cemented paste backfill multi-field performance in situ mathematic model numerical simulation
下载PDF
Rheological properties of a multiscale granular system during mixing of cemented paste backfill:A review 被引量:2
4
作者 Cuiping Li Xue Li Zhu’en Ruan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1444-1454,共11页
The technology of cemented paste backfill(CPB)is an effective method for green mining.In CPB,mixing is a vital process aiming to prepare a paste that meets the non-stratification,non-segregation,and non-bleeding requi... The technology of cemented paste backfill(CPB)is an effective method for green mining.In CPB,mixing is a vital process aiming to prepare a paste that meets the non-stratification,non-segregation,and non-bleeding requirements.As a multiscale granular system,homogenization is one of the challenges in the paste-mixing process.Due to the high shearing,high concentration,and multiscale characteristics,paste exhibits complex rheological properties in the mixing process.An overview of the mesomechanics and structural evolution is presented in this review.The effects of various influencing factors on the paste's rheological properties were investigated,and the rheological models of the paste were outlined from the macroscopic and mesoscopic levels.The results show that the mechanical effects and structural evolution are the fundamental factors affecting the rheological properties of the paste.Existing problems and future development trends are presented to change the practice where the CPB process comes first and the theory lags. 展开更多
关键词 cemented paste backfill RHEOLOGY mixing process MESOMECHANICS structural evolution
下载PDF
Systematic review of mixing technology for recycling waste tailings as cemented paste backfill in mines in China 被引量:2
5
作者 Liuhua Yang Jincang Li +4 位作者 Hongbin Liu Huazhe Jiao Shenghua Yin Xinming Chen Yang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1430-1443,共14页
The development of industry is inseparable from the support of mining.However,mining processes consume a large amount of energy,and increased tailing emissions can have a significant impact on the environment.In the p... The development of industry is inseparable from the support of mining.However,mining processes consume a large amount of energy,and increased tailing emissions can have a significant impact on the environment.In the past few decades,the mining industry developed many technologies that are related to mineral energy management,of which cemented paste backfill(CPB)is one of the representative technologies.CPB has been successfully applied to mine ground control and tailings management.In CPB technology,the mixing process is the key to achieving materials with good final quality and controlled properties.However,in the preparation process,the mixed homogeneity of the CPB is difficult to achieve because of fine tailings,high solid volume fraction,and high viscosity.Most research focused on the effect of mixing ingredients on CPB properties rather than on the preparation process of the CPB.Therefore,improving the performance and reducing the production cost of CPB by optimizing the mixing process are important.This review summarizes the current studies on the mixing technology of CPB and its application status in China.Then,it compares the advantages and disadvantages of multiple mixing equipment and discusses the latest results and research hotspots in paste preparation.Finally,it concludes the challenges and development trends of mixing technology on the basis of the relevant application cases in China to promoting cement-based material mixing technology development. 展开更多
关键词 cemented paste backfill mixed homogeneity mixing technology cement-based material
下载PDF
Wall slip behavior of cemented paste backfill slurry during pipeline based on noncontact experimental detection 被引量:2
6
作者 Zhenlin Xue Haikuan Sun +2 位作者 Deqing Gan Zepeng Yan Zhiyi Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1515-1523,共9页
Wall slip is a microscopic phenomenon of cemented paste backfill(CPB)slurry near the pipe wall,which has an important influence on the form of slurry pipe transport flow and velocity distribution.Directly probing the ... Wall slip is a microscopic phenomenon of cemented paste backfill(CPB)slurry near the pipe wall,which has an important influence on the form of slurry pipe transport flow and velocity distribution.Directly probing the wall slip characteristics using conventional experimental methods is difficult.Therefore,this paper established a noncontact experimental platform for monitoring the microscopic slip layer of CPB pipeline transport independently based on particle image velocimetry(PIV)and analyzed the effects of slurry temperature,pipe diameter,solid concentration,and slurry flow on the wall slip velocity of the CPB slurry,which refined the theory of the effect of wall slip characteristics on pipeline transport.The results showed that the CPB slurry had an extensive slip layer at the pipe wall with significant wall slip.High slurry temperature improved the degree of particle Brownian motion within the slurry and enhanced the wall slip effect.Increasing the pipe diameter was not conducive to the formation of the slurry slip layer and led to a transition in the CPB slurry flow pattern.The increase in the solid concentration raised the interlayer shear effect of CPB slurry flow and the slip velocity.The slip velocity value increased from 0.025 to 0.056 m·s^(-1)when the solid content improved from 55wt%to 65wt%.When slurry flow increased,the CPB slurry flocculation structure changed,which affected the slip velocity,and the best effect of slip layer resistance reduction was achieved when the transported flow rate was 1.01 m^(3)·h^(-1).The results had important theoretical significance for improving the stability and economy of the CPB slurry in the pipeline. 展开更多
关键词 particle image velocimetry cemented paste backfill noncontact experimental platform wall slip behavior pipeline transportation
下载PDF
A machine learning model to predict unconfined compressive strength of alkali-activated slag-based cemented paste backfill 被引量:1
7
作者 Chathuranga Balasooriya Arachchilage Chengkai Fan +2 位作者 Jian Zhao Guangping Huang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2803-2815,共13页
The unconfined compressive strength(UCS)of alkali-activated slag(AAS)-based cemented paste backfill(CPB)is influenced by multiple design parameters.However,the experimental methods are limited to understanding the rel... The unconfined compressive strength(UCS)of alkali-activated slag(AAS)-based cemented paste backfill(CPB)is influenced by multiple design parameters.However,the experimental methods are limited to understanding the relationships between a single design parameter and the UCS,independently of each other.Although machine learning(ML)methods have proven efficient in understanding relationships between multiple parameters and the UCS of ordinary Portland cement(OPC)-based CPB,there is a lack of ML research on AAS-based CPB.In this study,two ensemble ML methods,comprising gradient boosting regression(GBR)and random forest(RF),were built on a dataset collected from literature alongside two other single ML methods,support vector regression(SVR)and artificial neural network(ANN).The results revealed that the ensemble learning methods outperformed the single learning methods in predicting the UCS of AAS-based CPB.Relative importance analysis based on the bestperforming model(GBR)indicated that curing time and water-to-binder ratio were the most critical input parameters in the model.Finally,the GBR model with the highest accuracy was proposed for the UCS predictions of AAS-based CPB. 展开更多
关键词 Alkali-activated slag cemented paste backfill Machine learning Uniaxial compressive strength
下载PDF
Experimental study on thermal and mechanical properties of tailings-based cemented paste backfill with CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials 被引量:1
8
作者 Xiaoyan Zhang Tianrun Cao +3 位作者 Lang Liu Baoyun Bu Yaping Ke Qiangqiang Du 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期250-259,共10页
CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials(CEV)was prepared by atmospheric impregnation method.Using gold mine tailings as aggregate of cemented paste backfill(CPB)material,the ... CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials(CEV)was prepared by atmospheric impregnation method.Using gold mine tailings as aggregate of cemented paste backfill(CPB)material,the CPB with CEV added was prepared,and the specific heat capacity,thermal conductivity,and uniaxial compressive strength(UCS)of CPB with different cement-tailing ratios and CEV addition ratios were tested,the influence of the above variables on the thermal and mechanical properties of CPB was analyzed.The results show that the maximum encapsulation capacity of expanded vermiculite for CaCl_(2)·6H_(2)O is about 60%,and the melting and solidification enthalpies of CEV can reach 98.87 J/g and 97.56 J/g,respectively.For the CPB without CEV,the specific heat capacity,thermal conductivity,and UCS decrease with the decrease of cement-tailing ratio.For the CPB with CEV added,with the increase of CEV addition ratio,the specific heat capacity increases significantly,and the sensible heat storage capacity and latent heat storage capacity can be increased by at least 10.74%and 218.97%respectively after adding 12%CEV.However,the addition of CEV leads to the increase of pores,and the thermal conductivity and UCS both decrease with the increase of CEV addition.When cement-tailing ratio is 1:8 and 6%,9%,and 12%of CEV are added,the 28-days UCS of CPB is less than 1 MPa.Considering the heat storage capacity and cost price of backfill,the recommended proportion scheme of CPB material presents cement-tailing ratio of 1:6 and 12%CEV,and the most recommended heat storage/release temperature cycle range of CPB with added CEV is from 20 to 40℃.This work can provide theoretical basis for the utilization of heat storage backfill in green mines. 展开更多
关键词 CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials cemented paste backfill thermal property mechanical property
下载PDF
Effect of Hydrated Calcium Aluminate Cement on the Chloride Immobilization of Portland Cement Paste
9
作者 LU Zhouling TAN Hongbo +3 位作者 LIU Xiaohai CHEN Pian WANG Yifan LIANG Wenje 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1360-1371,共12页
To improve the efficiency and stability of chloride immobilization of portland cement paste,hydrated calcium aluminate cement(HCAC)prepared by wet grinding of CAC was added into portland cement paste as an additive.Th... To improve the efficiency and stability of chloride immobilization of portland cement paste,hydrated calcium aluminate cement(HCAC)prepared by wet grinding of CAC was added into portland cement paste as an additive.The immobilized chloride ratio(ICR)was evaluated,and the mechanism of chloride immobilization was researched by XRD,DTG,NMR,and MIP tests.The analysis results demonstrated that HCAC could improve the chloride immobilization capacity of portland cement paste.The mechanism was attributed to the following aspects:chemical binding capacity was enhanced via producing more Kuzel’s salt;physical adsorption capacity was reduced by decreasing the C-S-H gel;migration resistance was enhanced through refining the pore structure. 展开更多
关键词 hydrated calcium aluminate cement portland cement paste chloride immobilization kuzel's salt pore structure
下载PDF
Internal Curing Mechanism of Sepiolite in Cement Paste
10
作者 许晨席 王彩辉 +4 位作者 LI Wenhao SUN Kaili ZHANG Guangxing SUN Guowen KONG Lijuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期857-864,共8页
In order to explore the internal curing mechanism of sepiolite in cement-based materials,the effects of sepiolite on the water consumption of standard consistency,setting time,viscosity,strength,pore structure charact... In order to explore the internal curing mechanism of sepiolite in cement-based materials,the effects of sepiolite on the water consumption of standard consistency,setting time,viscosity,strength,pore structure characteristics,micro-hardness characteristics and two-dimensional surface characteristics of cement paste were studied,respectively.The experimental results show that the water consumption of standard consistency increases linearly with the increase of sepiolite content.The setting time and viscosity are also lengthened and increased with the addition of sepiolite,respectively.When the content of sepiolite exceeds 5%,the strength of the specimen increases significantly.The BET results show that the pore structure of the interfacial transition zone(ITZ)in hardened cement paste(HCP)with sepiolite is optimized after curing for28 d and its pore volume content with below 10 nm is decreased,especially for the specimen with a lower watercement ratio.The characteristics of microhardness and strength of specimens have the same law.Backscattered electron image(BSE-IA)shows that the ITZ of the specimen with sepiolite is denser and the unhydrated cement particles are less than the reference specimen. 展开更多
关键词 SEPIOLITE cement paste internal curing
下载PDF
Early-Age Properties Development of Recycled Glass Powder Blended Cement Paste:Strengths,Shrinkage,Nanoscale Characteristics,and Environmental Analysis
11
作者 Zhihai He Menglu Shen +3 位作者 Jinyan Shi Jingyu Chang Víctor Revilla-Cuesta Osman Gencel 《Journal of Renewable Materials》 SCIE EI 2023年第4期1835-1852,共18页
Recycling solid waste in cement-based materials cannot only ease its load on the natural environment but also reduce the carbon emissions of building materials.This study aims to investigate the effect of recycled gla... Recycling solid waste in cement-based materials cannot only ease its load on the natural environment but also reduce the carbon emissions of building materials.This study aims to investigate the effect of recycled glass powder(RGP)on the early-age mechanical properties and autogenous shrinkage of cement pastes,where cement is replaced by 10%,20%and 30%of RGP.In addition,the microstructure and nano-mechanical properties of cement paste with different RGP content and water to binder(W/B)ratio were also evaluated using SEM,MIP and nanoindentation techniques.The results indicate that the early-age autogenous shrinkage decreases with the increase of RGP content and W/B ratio.While the mechanical strength deteriorates due to the addition of RGP,it can be compensated by reducing the W/B ratio.Although the addition of RGP increases the total porosity of the hardened paste,it reduces the small size porosity(<50 nm).In addition,the proportions of different types of C-S-H are changed,and the volume fraction of porosity is increased,but that of hydration products of cement paste is reduced due to the incorporation of RGP.Besides its pozzolanic activity,the mitigated shrinkage deformation that RGP is generating in cement pastes is encouraging for its use as a novel supplementary cementitious material that reduces the early-age cracking risk of cement-based materials.Meanwhile,the life cycle assessments indicate that the RGP-cement component is an economical and eco-friendly novel engineering material. 展开更多
关键词 cement paste waste glass powder autogenous shrinkage microstructure NANOINDENTATION
下载PDF
Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate
12
作者 Qinli Zhang Hao Wu +3 位作者 Yan Feng Daolin Wang Huaibin Su Xiaoshuang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期225-235,共11页
Rod milling sand(RMS)—a coarse sand aggregate—was recycled for cemented paste backfill(CPB)for the underground mined area at the Jinchuan nickel deposit,named rod milling sand-based cemented paste backfill(RCPB).The... Rod milling sand(RMS)—a coarse sand aggregate—was recycled for cemented paste backfill(CPB)for the underground mined area at the Jinchuan nickel deposit,named rod milling sand-based cemented paste backfill(RCPB).The adverse effects of coarse particles on the transportation of CPB slurry through pipelines to underground stopes resulting in weakening of the stability of the backfill system are well known.Therefore,sulfonated naphthalene formaldehyde(SNF)condensate was used for the performance improvement of RCPB.The synergistic effect of solid content(SC),lime-to-sand ratio,and SNF dosage on the rheological and physicomechanical properties,including slump,yield stress,bleeding rate,uniaxial compressive strength(UCS),as well as mechanism analysis of RCPB,have been explored.The results indicate that the effect of SNF on RCPB performance is related to the SNF dosage,lime-to-sand ratio,and SC.The slump of fresh RCPB with 0.1wt%-0.5wt%SNF increased by 2.6%-26.2%,whereas the yield stress reduced by 4.1%-50.3%,indicating better workability and improved cohesiveness of the mix.The bleeding rate of fresh RCPB decreased first and then rose with the increase of SNF dosage,and the peak decrease was 67.67%.UCS of RCPB first increased and then decreased with the increase of SNF dosage.At the optimal SNF addition ratio of 0.3wt%,the UCS of RCPB curing for 7,14 and,28 d ages increased by 31.5%,28.4%,and 29.5%,respectively.The beneficial effects of SNF in enhancing the early UCS of RCPB have been corroborated.However,the later UCS increases at a slower rate.The research findings may guide the design and preparation of RCPB with adequate performance for practical applications. 展开更多
关键词 rod milling sand sulfonated naphthalene formaldehyde condensate cemented paste backfill rheological properties physicomechanical properties
下载PDF
Strength evolution and deformation behaviour of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage 被引量:20
13
作者 Ghirian Alireza Fall Mamadou 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期809-817,共9页
In this study, a pressure cell apparatus is developed to investigate the early age evolution of the strength and deformation behaviour of cemented paste backfill(CPB) when subjected to various loading conditions under... In this study, a pressure cell apparatus is developed to investigate the early age evolution of the strength and deformation behaviour of cemented paste backfill(CPB) when subjected to various loading conditions under different curing scenarios. The different curing scenarios that are simulated include:(1)drained and undrained conditions,(2) different filling rates,(3) different filling sequences, and(4) different curing stresses. The findings show that drainage, curing stress, curing time and filling rate influence the mechanical and deformation behaviours of CPB materials. The coupled effects of consolidation, drainage and suction contribute to the strength development of drained CPB subjected to curing stress. On the other hand, particle rearrangement caused by the applied pressure and suction development due to self-desiccation plays a significant role in the strength gain of undrained CPB cured under stress.Furthermore, curing stress induces slightly faster rate of cement hydration, which can contribute to strength acquisition. 展开更多
关键词 cemented paste backfill TAILINGS Pore pressure Curing under stress Plug fill cement
下载PDF
Effects of water content, water type and temperature on the rheological behaviour of slag-cement and fly ash-cement paste backfill 被引量:20
14
作者 Yue Zhao Abbas Taheri +2 位作者 Murat Karakus Zhongwei Chen An Deng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期271-278,共8页
The pumping ability and placement performance of fresh cemented paste backfill(CPB) in underground mined cavities depend on its rheological properties. Hence, it is crucial to understand the rheology of fresh CPB slur... The pumping ability and placement performance of fresh cemented paste backfill(CPB) in underground mined cavities depend on its rheological properties. Hence, it is crucial to understand the rheology of fresh CPB slurry, which is related to CPB mixture design and the temperature underground. This paper presented an experimental study investigating the effects of binder type, content, water chemical properties and content, and temperature, on the rheological properties of CPB material prepared using the tailings of a copper mine in South Australia. Portland cement(PC), a newly released commercially manufactured cement called Minecem(MC) and fly ash(FA) were used as the binders added to the mine tailing materials. Various amounts of two different water types were added to the mixtures in the preparation of backfill material slurry. Six different temperatures ranging from 5 to 60 °C were to investigate the effect of temperature on CPB rheology. Overall, the increasing water content and decreasing temperature lead to lower yield stress. Based on the results obtained from the rheological properties of CPB slurry, it was found that at room temperature(25 °C), with regards to the unconfined compressive strength(UCS) performance, the replacement of 4% PC mixed CPB(28 days UCS 425 k Pa) to 3% MC mixed CPB(28 days UCS 519 k Pa), reduced the slurry yield stress from 210.7 to 178.5 Pa. The results also showed that the chemical composition of water affects the yield stress of CPB slurry and that MC mitigates the negative effect of mine-processed water(MW) and thus lead to improve the rheological properties of the slurry. However, the results suggested that the rheological properties of a mixture using MC is very sensitive to the water volume and temperature change. Therefore, using MC in backfill requires better quality control in slump mixing. 展开更多
关键词 cemented paste backfill Minecem RHEOLOGY Yield stress Fly ash Portland cement
下载PDF
Effect of Coal Gangue with Different Kaolin Contents on Compressive Strength and Pore Size of Blended Cement Paste 被引量:11
15
作者 陈益民 ZHOU Shuagxi ZHANG Wensheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第1期12-15,共4页
The effects of activated coal gangue on compressive strength, porosity and pore size distribution of hardened cement pastes were investigated. Activated coal gangue with two different kaolin contents, one higher and o... The effects of activated coal gangue on compressive strength, porosity and pore size distribution of hardened cement pastes were investigated. Activated coal gangue with two different kaolin contents, one higher and one lower, were used to partially replace Portland cement at 0%, 10%, and 30% by weight. The water to binder ratio(w/b) of 0.5 was used for all the blended cement paste mixes. Experimental results indicate that the blended cement of activated coal gangue mortar with higher kaolin mineral content has a higher compressive strength than that with lower kaolin mineral content. The porosity and pore size of blended cement mortar were significantly affected by the replacement of activated coal gangue. 展开更多
关键词 activated coal gangue compressive strength POROSITY blended cement paste
下载PDF
Effect of Pre-wetting Lightweight Aggregates on the Mechanical Performances and Microstructure of Cement Pastes 被引量:5
16
作者 丁庆军 向玮衡 +1 位作者 ZHANG Gaozhan HU Cheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期140-146,共7页
The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase com... The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase composition,hydration parameters and micromorphology of the cement pastes were investigated.The results showed that the water absorption and desorption capacities of the lightweight aggregates increased with the decrease of the densification degree.With the addition of pre-wetting lightweight aggregates,the compressive strength of the cement pastes would increase.Moreover,the enhancement effect was more obviously with the desorption capacity of pre-wetting lightweight aggregates increasing.Especially,sample S1 with pre-wetting red-mud ceramisites had the highest compressive strength,of which increased to 49.4 MPa after 28 d curing age.The reason is that mainly because the addition of pre-wetting lightweight aggregates can promote the generation of C–S–H gels in the interfacial zone,and the hydration degree of the interfacial zone increases with the water desorption of pre-wetting lightweight aggregates increasing.It is contributed to optimize the microstructure to enhance microhardness of the interfacial zone,resulting in the compressive strength of the cement-based materials improving.Therefore,the pre-wetting lightweight aggregates with high porosity and strength are the potential internal curing agents for high-strength lightweight concretes. 展开更多
关键词 PRE-WETTING lightweight AGGREGATES cement pasteS INTERFACIAL zone COMPRESSIVE strength MICROSTRUCTURE
下载PDF
Effect of curing humidity on performance of cemented paste backfill 被引量:8
17
作者 Di Wu Run-kang Zhao +1 位作者 Chao-wu Xie Shuai Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第8期1046-1053,共8页
Cemented paste backfill(CPB),a mixture of tailings,binder,and water,is widely and extensively used for the recovery of mineral resources,the prevention of ground subsidence,and the management of mine waste.When instal... Cemented paste backfill(CPB),a mixture of tailings,binder,and water,is widely and extensively used for the recovery of mineral resources,the prevention of ground subsidence,and the management of mine waste.When installed,the CPB is subjected to complex environmental conditions such as water content,temperature,and power,which have a significant impact on its efficiency.Thus,this study conducts a series of laboratory programs,including investigation of moisture,temperature,stress–strain relation,and microstructure to show the effect of curing humidity on the CPB behaviors.The results obtained indicate that ambient humidity can have a dramatic effect on CPB in terms of its macro performance of internal relative humidity,temperature and strength,as well as the micro expression.Typical examples of these effects on CPB include an increase in curing humidity,which favors binder hydration,and then an increase in hydration materials,temperature and peak stress in the CPB.The results obtained will lead to a better understanding of CPB’s responses to various environmental conditions. 展开更多
关键词 cemented paste backfill CURING humidity TEMPERATURE MICROSTRUCTURE
下载PDF
Spatial Distribution of the Increased Porosity of Cement Paste due to Calcium Leaching 被引量:4
18
作者 万克树 LI Lin +1 位作者 XU Qiong SUN Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期735-744,共10页
Using the tomography image, a method to characterize the 3D spatial distributions of increased porosity was proposed, and the increased porosity distributions of cement pastes with different leaching degrees were give... Using the tomography image, a method to characterize the 3D spatial distributions of increased porosity was proposed, and the increased porosity distributions of cement pastes with different leaching degrees were given using the current method. The leaching processes of CH/C-S-H and the contribution of CH/C-S-H leaching to porosity evolution were discussed. The proposed method can be applied to all cement- based materials with any leaching degrees. From the quantitative increased porosity results, we find that the CH leaching finished quickly on the sharp CH leaching front. 展开更多
关键词 calcium leaching cement paste characterization increased porosity
下载PDF
Early Stage Hydration Mechanism of Cellulose Ether Modified Thin Layer Cement Pastes 被引量:5
19
作者 马保国 SU Lei +1 位作者 JIAN Shouwei SONG Xuefeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第6期1172-1176,共5页
The early stage hydration mechanism of cellulose ether modified thin layer cement pastes was studied, using brick as the matrix. Samples of 6 h, 24 h, and 3 d and 7 d hydration time were analyzed to study the hydratio... The early stage hydration mechanism of cellulose ether modified thin layer cement pastes was studied, using brick as the matrix. Samples of 6 h, 24 h, and 3 d and 7 d hydration time were analyzed to study the hydration law on the surface of high water-absorbing matrix. Hydration products were qualitatively and semi-quantitatively analyzed using XRD, TG-DSC-DTG, FTIR and SEM. The experimental results show that there is no enough water for 2 mm thick cement pastes to hydrate, because of rapid water absorption of matrix. Trace amounts of Ca (OH)2 was detected after three days hydration. With the prolongation of hydration time, the category and concentration of hydration products do not change. Compared with 2 mm thick cement pastes, 6 mm thick cement pastes and 10 mm thick cement pastes have lower dehydration rate and water loss. The humidity field of the cement paste show different changes within the same time. 6 mm thick cement paste and 10 mm thick cement pastes have longer time and more water to hydrate. Ca(OH)2 and ettringite were detected after 6 hours hydration and the concentrations of hydration products increased from 24 hours to 7 days. 展开更多
关键词 cellulose ether thin layer cement pastes high water-absorbing matrix hydration products
下载PDF
Effect of Curing Regime on Degree of Al^(3+) Substituting for Si^(4+) in C-S-H Gels of Hardened Portland Cement Pastes 被引量:5
20
作者 胡晨光 胡曙光 +2 位作者 DING Qingjun FENG Xiaoxin HUANG Xiulin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第3期546-552,共7页
The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance ... The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance (NMR) with deconvolution technique. The curing regimes included the constant temperature (20, 40, 60 and 80 ℃) and variable temperature (simulated internal temperature of mass concrete with 60 ℃ peak). The results indicate that constant temperature of 20 ℃ is beneficial to substitution ofAl3+ for Si4+, and AI/Si ratio changes to be steady after 180 d. The increase of Al/Si ratio at 40 ℃is less than that at 20℃ for 28 d. The other three regimes of high temperature increase Al/Si ratio only before 3 d, on the contrary to that from 3 to 28 d. However, the 20 ℃ curing stage from 28 to 180 d at variable temperature regime, is beneficial to the increase of AI/Si ratio which is still lower than that at constant temperature regime of 20 ℃ for the same age. A nonlinear relation exists between the Al/Si ratio and temperature variation or mean chain length (MCL) of C-S-H gels, furthermore, the amount ofAl3+ which can occupy the bridging tetrahedra sites in C-S-H structure is insufficient in hardened Portland cement pastes. 展开更多
关键词 constant temperature variable temperature degree of Al3+ substituting for Si4+ C-S-H hardened cement pastes
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部