The catalyst boron trifluoride etherate was used to catalyze the reaction of epoxy resin with polyethylene glycol (PEG), and the effect of the concentration of the catalyst on the reaction is studied. It is shown that...The catalyst boron trifluoride etherate was used to catalyze the reaction of epoxy resin with polyethylene glycol (PEG), and the effect of the concentration of the catalyst on the reaction is studied. It is shown that there exist two competitive reactions : I, self polymerization of epoxy resin via chain growth and II, copolymerization of epoxy resin with PEG via step growth. At high concentration of the catalyst reaction I dominates and reaction II is negligible. On the contrary, at low concentration of the catalyst, reaction II dominates and block copolymers are formed In the intermediate case, the two reactions are comparable with the result that a gel structure is obtained.展开更多
Doppler broadening and coincidence Doppler broadening of annihilation radiation experiments have been performed in three kinds of polyethylene glycol(PEG) membrane formed with different average molecular weight usin...Doppler broadening and coincidence Doppler broadening of annihilation radiation experiments have been performed in three kinds of polyethylene glycol(PEG) membrane formed with different average molecular weight using the tunable monoenergy slow positron probe as a function of implantion energy. The obtained positron annihilation parameters are interpreted from two aspects: surface effect and differences in micro-structure or chemical environment of positron annihilation. The experimental results show that the regulation of densification of PEG molecular packing and distribution uniformity from the near surface layer to the bulk region in the film forming process can be well realized by changing its molecular weight. Combining a variable monoenergetic slow positron beam and these two positron annihilation spectroscopy methods is a powerful tool to study positron annihilation characteristics and for polymeric thin-film fine structure analysis.展开更多
Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been pr...Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety.展开更多
The aim of the present work was to prepare a well-defined hydrogel of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks. The hydrogel was synthesized via the reaction of copper(I)- c...The aim of the present work was to prepare a well-defined hydrogel of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks. The hydrogel was synthesized via the reaction of copper(I)- catalyzed 1,3-dipolar azide-alkyne cycloaddition(CuA AC) with poly(ethylene glycol)-dopamine(PEG-DA)(“Click Chemistry”) followed by complexation with Fe-(3+) ions to crosslink the polymeric network. The chemical composition and morphology of the resulting hydrogels were characterized by Fourier transform infrared spectroscopy(FTIR), -1H-NMR and scanning electron microscopy(SEM). Swelling ratio, mechanical strength, conductivity, and degradation behaviors of the hydrogels were also studied. The effect of the polymer chain length on properties of hydrogels was explored. The compressive strength of hydrogels could reach as high as 13.1 MPa with a conductivity of 2.2 × 10^-5 S·cm^-1. The hydrogels also exhibited excellent thermal stability even at a temperature of 300 °C, whereas degradation of the hydrogel after 7 weeks was observed under a physiological condition. In addition, the hydrogel exhibited a good biocompatibility based on its in vivo performance through an in vivo subcutaneous implantation model. No inflammation and no obvious abnormality of the surrounding tissue were observed when the hydrogel was subcutaneously implanted for 2 weeks. This work is a step towards creating a new pathway to synthesize hydrogels of interpenetrating networks which could be of important applications in the future research.展开更多
A novel on-line solid-phase microextraction–high-performance liquid chromatography(SPME–HPLC)system was developed for the determination of heterocyclic aromatic amines(HAAs) in food samples. A poly(vinylphenylb...A novel on-line solid-phase microextraction–high-performance liquid chromatography(SPME–HPLC)system was developed for the determination of heterocyclic aromatic amines(HAAs) in food samples. A poly(vinylphenylboronic acid-co-ethylene glycol dimethacrylate) polymer monolith was prepared for on-line efficient extraction and large-volume injection was used to increase the sensitivity of detection.The polymermonolith, based on a ternary porogen, was prepared by in situ polymerization of vinylphenylboronic acid(VPBA) and ethylene glycol dimethacrylate(EGDMA) in a fused-silica capillary column. It showed good permeability, high extraction capacity, and high selectivity. The column-tocolumn reproducibility was satisfactory, and the enrichment factors for HAAs were 3746–7414.Conditions influencing the on-line extraction efficiency, including p H of sample solutions, flow rate of extraction and desorption, and desorption volume, were investigated. The proposed method had low limit of detection(0.10–0.15 ng/L) and good linearity. Trace HAAs in roast beef and lamb samples were determined, and the amounts of 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline, and 2-amino-3,4,7,8-tetramethyl-3H-imidazo[4,5-f]quinoxaline in these samples were 0.235–2.08 ng/g. The recoveries for the five HAAs ranged from74.3% to 119%, and the relative standard deviation(RSDs) were less than 8.2%. The results showed that the proposed on-line method was highly sensitive for monitoring HAAs in different food samples.展开更多
PEG-related adhesives are limited in clinical use because they are easy to swell and cannot support the cell growth. In this study, we produced a series of POSS-modified PEG adhesives with high adhesive strength. Intr...PEG-related adhesives are limited in clinical use because they are easy to swell and cannot support the cell growth. In this study, we produced a series of POSS-modified PEG adhesives with high adhesive strength. Introduction of inorganic hydrophobic POSS units decreased the swelling of the adhesives and enhanced cell adhesion and growth. The in vitro cytotoxicity and in vivo inflammatory response experiments clearly demonstrated that the adhesives were nontoxic and possessed excellent biocompatibility. Compared with the sutured wounds, the adhesive-treated wounds showed an accelerated healing process in wounded skin model of the Bama miniature pig, demonstrating that the POSS-modified PEG adhesive is a promising candidate for wound closure.展开更多
A Novel thermosensitive dendritic copolymer based on polyethylene glycol(PEG) and poly(Nisopropylacrylamide)(PNIPAm) with a cloud point(CP) around 36 ?C was successfully synthesized by preparation of a dendri...A Novel thermosensitive dendritic copolymer based on polyethylene glycol(PEG) and poly(Nisopropylacrylamide)(PNIPAm) with a cloud point(CP) around 36 ?C was successfully synthesized by preparation of a dendritic polyol and followed by atom transfer radical polymerization(ATRP) of N-isopropylacrylamide. The dendritic copolymer was characterized using gel-permeation chromatography(GPC), FTIR and 1H-NMR spectroscopy. The selfassociation behavior of the copolymer in aqueous medium was investigated by dynamic light scattering(DLS) and transmission electron microscopy(TEM). These investigations confirmed that the dendritic copolymer showed different association behaviors at various temperatures.展开更多
文摘The catalyst boron trifluoride etherate was used to catalyze the reaction of epoxy resin with polyethylene glycol (PEG), and the effect of the concentration of the catalyst on the reaction is studied. It is shown that there exist two competitive reactions : I, self polymerization of epoxy resin via chain growth and II, copolymerization of epoxy resin with PEG via step growth. At high concentration of the catalyst reaction I dominates and reaction II is negligible. On the contrary, at low concentration of the catalyst, reaction II dominates and block copolymers are formed In the intermediate case, the two reactions are comparable with the result that a gel structure is obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575205,11475197,11675188,and 11475193)
文摘Doppler broadening and coincidence Doppler broadening of annihilation radiation experiments have been performed in three kinds of polyethylene glycol(PEG) membrane formed with different average molecular weight using the tunable monoenergy slow positron probe as a function of implantion energy. The obtained positron annihilation parameters are interpreted from two aspects: surface effect and differences in micro-structure or chemical environment of positron annihilation. The experimental results show that the regulation of densification of PEG molecular packing and distribution uniformity from the near surface layer to the bulk region in the film forming process can be well realized by changing its molecular weight. Combining a variable monoenergetic slow positron beam and these two positron annihilation spectroscopy methods is a powerful tool to study positron annihilation characteristics and for polymeric thin-film fine structure analysis.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC),Canada Research Chair Program(CRC),Canada Foundation for Innovation(CFI),Ontario Research Fund(ORF),China Automotive Battery Research Institute Co.,Ltd.,Glabat Solid-State Battery Inc.,Canada Light Source(CLS)at the University of Saskatchewan,Interdisciplinary Development Initiatives(IDI)by Western University,and University of Western Ontariothe support from Mitacs Accelerate Program(IT13735)the funding support from Banting Postdoctoral Fel owship(BPF—180162)
文摘Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety.
基金supported by the National Natural Science Foundation of China(Nos.2127402021074022 and 21304019)+2 种基金the Key Laboratory of Environmental Medicine Engineering of Ministry of Education(Southeast University)National“973”Project Foundation of China(No.2010CB944804)“the Fundamental Research Funds for the Central Universities”
文摘The aim of the present work was to prepare a well-defined hydrogel of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks. The hydrogel was synthesized via the reaction of copper(I)- catalyzed 1,3-dipolar azide-alkyne cycloaddition(CuA AC) with poly(ethylene glycol)-dopamine(PEG-DA)(“Click Chemistry”) followed by complexation with Fe-(3+) ions to crosslink the polymeric network. The chemical composition and morphology of the resulting hydrogels were characterized by Fourier transform infrared spectroscopy(FTIR), -1H-NMR and scanning electron microscopy(SEM). Swelling ratio, mechanical strength, conductivity, and degradation behaviors of the hydrogels were also studied. The effect of the polymer chain length on properties of hydrogels was explored. The compressive strength of hydrogels could reach as high as 13.1 MPa with a conductivity of 2.2 × 10^-5 S·cm^-1. The hydrogels also exhibited excellent thermal stability even at a temperature of 300 °C, whereas degradation of the hydrogel after 7 weeks was observed under a physiological condition. In addition, the hydrogel exhibited a good biocompatibility based on its in vivo performance through an in vivo subcutaneous implantation model. No inflammation and no obvious abnormality of the surrounding tissue were observed when the hydrogel was subcutaneously implanted for 2 weeks. This work is a step towards creating a new pathway to synthesize hydrogels of interpenetrating networks which could be of important applications in the future research.
基金supported by the National Natural Science Foundation of China(Nos.21127008,21375155)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120171110001)the Guangdong Provincial Natural Science Foundation of China(No.2015A030311020)
文摘A novel on-line solid-phase microextraction–high-performance liquid chromatography(SPME–HPLC)system was developed for the determination of heterocyclic aromatic amines(HAAs) in food samples. A poly(vinylphenylboronic acid-co-ethylene glycol dimethacrylate) polymer monolith was prepared for on-line efficient extraction and large-volume injection was used to increase the sensitivity of detection.The polymermonolith, based on a ternary porogen, was prepared by in situ polymerization of vinylphenylboronic acid(VPBA) and ethylene glycol dimethacrylate(EGDMA) in a fused-silica capillary column. It showed good permeability, high extraction capacity, and high selectivity. The column-tocolumn reproducibility was satisfactory, and the enrichment factors for HAAs were 3746–7414.Conditions influencing the on-line extraction efficiency, including p H of sample solutions, flow rate of extraction and desorption, and desorption volume, were investigated. The proposed method had low limit of detection(0.10–0.15 ng/L) and good linearity. Trace HAAs in roast beef and lamb samples were determined, and the amounts of 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline, and 2-amino-3,4,7,8-tetramethyl-3H-imidazo[4,5-f]quinoxaline in these samples were 0.235–2.08 ng/g. The recoveries for the five HAAs ranged from74.3% to 119%, and the relative standard deviation(RSDs) were less than 8.2%. The results showed that the proposed on-line method was highly sensitive for monitoring HAAs in different food samples.
基金financially supported by the National Natural Science Foundation of China(Nos.21674120,81630056,21474115)PLA(No.AWS14C003)“Young Thousand Talents Program”
文摘PEG-related adhesives are limited in clinical use because they are easy to swell and cannot support the cell growth. In this study, we produced a series of POSS-modified PEG adhesives with high adhesive strength. Introduction of inorganic hydrophobic POSS units decreased the swelling of the adhesives and enhanced cell adhesion and growth. The in vitro cytotoxicity and in vivo inflammatory response experiments clearly demonstrated that the adhesives were nontoxic and possessed excellent biocompatibility. Compared with the sutured wounds, the adhesive-treated wounds showed an accelerated healing process in wounded skin model of the Bama miniature pig, demonstrating that the POSS-modified PEG adhesive is a promising candidate for wound closure.
文摘A Novel thermosensitive dendritic copolymer based on polyethylene glycol(PEG) and poly(Nisopropylacrylamide)(PNIPAm) with a cloud point(CP) around 36 ?C was successfully synthesized by preparation of a dendritic polyol and followed by atom transfer radical polymerization(ATRP) of N-isopropylacrylamide. The dendritic copolymer was characterized using gel-permeation chromatography(GPC), FTIR and 1H-NMR spectroscopy. The selfassociation behavior of the copolymer in aqueous medium was investigated by dynamic light scattering(DLS) and transmission electron microscopy(TEM). These investigations confirmed that the dendritic copolymer showed different association behaviors at various temperatures.