Three new cationic polymerizable surfactants are synthesized by the reaction of alkylmaleic hemiester with glycidyltrimethylammonium chloride. Their structures are confirmed by H-1 NMR, IR and elements analysis. The v...Three new cationic polymerizable surfactants are synthesized by the reaction of alkylmaleic hemiester with glycidyltrimethylammonium chloride. Their structures are confirmed by H-1 NMR, IR and elements analysis. The values of CMC and gamma (CMC) of these surfactants have been measured. One can obtain nearly monodisperse polystyrene latex by emulsion polymerization using the polymerizable surfactant.展开更多
Monooctadecyl maleate, as a polymerizable surfactant, was synthesized by the mono-esterification of maleic anhydride and octadecanol, and was utilized to surface-modify nano-Fe3O4 particles. A polymerizable magnetic f...Monooctadecyl maleate, as a polymerizable surfactant, was synthesized by the mono-esterification of maleic anhydride and octadecanol, and was utilized to surface-modify nano-Fe3O4 particles. A polymerizable magnetic fluid was obtained by directly dispersing modified nano-Fe3O4 particles into styrene monomer, and the polystyrene/nano-Fe3O4 composite was prepared through free radical polymerization of polymerizable magnetic fluid. The structure and dispersion status in different dispersion phases of modified nano-Fe3O4 particles were studied by Fourier transform infrared (FTIR) spectrometry, X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The experimental results show that the nano-Fe3O4 particles modified by monooctadecyl maleate with the size of about 7-10 nm can be uniformly dispersed into styrene and fixed in the composite during the procedure of polymerization. Thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM) indicate that the thermal stability of polystyrene/nano-Fe3O4 composite is improved compared to that of pure polystyrene, and the composite is a sort of superparamagnetic materials.展开更多
A photorheologically reversible micelle composed of polymerizable cationic surfactant n-cetyl dimethylallyl am- monium chloride (CDAAC) and trans-4-phenylazo benzoic acid (trans-ACA) was prepared. The effects of m...A photorheologically reversible micelle composed of polymerizable cationic surfactant n-cetyl dimethylallyl am- monium chloride (CDAAC) and trans-4-phenylazo benzoic acid (trans-ACA) was prepared. The effects of molar ratio of CDAAC/trans-ACA, time of UV and visible light irradiation and temperature on the rheological properties of micellar system were investigated. The results show that before UV irradiation the system with an optimum CDAAC/trans-ACA molar ratio of 1.4 forms viscoelastic micelles at 45 ℃. After 365 nm UV irradiation, the viscos- ities of micelle systems with different concentrations at fixed molar ratio of 1.4 are decreased by 85%-95%. The CDAAC/trans-ACA (14 mmol. L- 1/10 mmol. L- 1 ) micelle system exhibits shear thinning property and its viscos- ity is decreased obviously with the increases of UV irradiation time less than I h. The rheological process during LIV irradiation for CDAAC/trans-ACA (14 mmol- L- 1/10 mmol. L 1) micelle proves that viscosity, elastic modulus G' and viscous modulus G" will reduce quickly with the UV light. Furthermore, the micelle system after 1 h UV- irradiation is able to revert to its initial high viscosity with 460 nm visible light irradiation for 4 h, and the micelle can be cycled between low and high viscosity states by repetitive UV and visible light irradiations. The LIV-Vis spectra of CDAAC/trans-ACA micelle indicate that its photosensitive theological properties are related closely to photoisomerization of trans-ACA to c/s-ACA.展开更多
基金the National Natural Sciences Foundation of China (29903006) and National Microgravity Key Laboratory, Chinese Academy of Scie
文摘Three new cationic polymerizable surfactants are synthesized by the reaction of alkylmaleic hemiester with glycidyltrimethylammonium chloride. Their structures are confirmed by H-1 NMR, IR and elements analysis. The values of CMC and gamma (CMC) of these surfactants have been measured. One can obtain nearly monodisperse polystyrene latex by emulsion polymerization using the polymerizable surfactant.
基金Funded by the Natural Science Foundation of Guangdong Province (No. 020891)
文摘Monooctadecyl maleate, as a polymerizable surfactant, was synthesized by the mono-esterification of maleic anhydride and octadecanol, and was utilized to surface-modify nano-Fe3O4 particles. A polymerizable magnetic fluid was obtained by directly dispersing modified nano-Fe3O4 particles into styrene monomer, and the polystyrene/nano-Fe3O4 composite was prepared through free radical polymerization of polymerizable magnetic fluid. The structure and dispersion status in different dispersion phases of modified nano-Fe3O4 particles were studied by Fourier transform infrared (FTIR) spectrometry, X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The experimental results show that the nano-Fe3O4 particles modified by monooctadecyl maleate with the size of about 7-10 nm can be uniformly dispersed into styrene and fixed in the composite during the procedure of polymerization. Thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM) indicate that the thermal stability of polystyrene/nano-Fe3O4 composite is improved compared to that of pure polystyrene, and the composite is a sort of superparamagnetic materials.
基金Supported by the National Natural Science Foundation of China(21273072)
文摘A photorheologically reversible micelle composed of polymerizable cationic surfactant n-cetyl dimethylallyl am- monium chloride (CDAAC) and trans-4-phenylazo benzoic acid (trans-ACA) was prepared. The effects of molar ratio of CDAAC/trans-ACA, time of UV and visible light irradiation and temperature on the rheological properties of micellar system were investigated. The results show that before UV irradiation the system with an optimum CDAAC/trans-ACA molar ratio of 1.4 forms viscoelastic micelles at 45 ℃. After 365 nm UV irradiation, the viscos- ities of micelle systems with different concentrations at fixed molar ratio of 1.4 are decreased by 85%-95%. The CDAAC/trans-ACA (14 mmol. L- 1/10 mmol. L- 1 ) micelle system exhibits shear thinning property and its viscos- ity is decreased obviously with the increases of UV irradiation time less than I h. The rheological process during LIV irradiation for CDAAC/trans-ACA (14 mmol- L- 1/10 mmol. L 1) micelle proves that viscosity, elastic modulus G' and viscous modulus G" will reduce quickly with the UV light. Furthermore, the micelle system after 1 h UV- irradiation is able to revert to its initial high viscosity with 460 nm visible light irradiation for 4 h, and the micelle can be cycled between low and high viscosity states by repetitive UV and visible light irradiations. The LIV-Vis spectra of CDAAC/trans-ACA micelle indicate that its photosensitive theological properties are related closely to photoisomerization of trans-ACA to c/s-ACA.