期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Two-dimensional polymer-based nanosheets for electrochemical energy storage and conversion 被引量:3
1
作者 Shuai Bi Chenbao Lu +2 位作者 Wenbei Zhang Feng Qiu Fan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期99-116,共18页
Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fiel... Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fields of chemistry, physics, and materials science. As a new family of 2D nanomaterials, 2D polymerbased nanosheets, featuring excellent characters, such as tunable framework structures, light weight, flexibility, high specific surface, and good semiconducting properties, have been emerging as one kind of promising functional materials for optoelectronics, gas separation, catalysis and sensing, etc. In this review, the recent progress in synthetic approach and characterization of 2D polymer-based nanosheets were summarized, and their current advances in electrochemical energy storage and conversion including second batteries, supercapacitors, oxygen reduction and hydrogen evolution were discussed systematically. 展开更多
关键词 Two-dimensional polymer Nanosheet Nanoscale morphology Electrochemical performance Energy storage and conversion
下载PDF
Highly Efficient Power Conversion from Salinity Gradients with Ion-Selective Polymeric Nanopores
2
作者 凌云 闫东晓 +4 位作者 王鹏飞 汪茂 文琪 刘峰 王宇钢 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期91-94,共4页
A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion e... A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion efficiency and power density are often limited due to the challenge in reliably controlling the size of the nanopores with the conventional chemical etching method. Here we report that without chemical etching, polyimide (PI) membranes irradiated with GeV heavy ions have negatively charged nanopores, showing nearly perfect selectivity for cations over anions, and they can generate electrical power from salinity gradients. We further demonstrate that the power generation efficiency of the PI membrane approaches the theoretical limit, and the maximum power density reaches 130m W/m2 with a modified etching method, outperforming the previous energy conversion device that was made of polymeric nanopore membranes. 展开更多
关键词 of on in from with Highly Efficient Power conversion from Salinity Gradients with Ion-Selective Polymeric Nanopores
下载PDF
The Effect of Cyclodextrins in Polymer Particles Synthesis 被引量:2
3
作者 JieHU BaiLingLIU 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第4期459-462,共4页
The free radical polymerization of styrene in water in the presence of β-cyclodextrin (β-CD) is described. It is found that β-CD could greatly accelerate the polymerization, enhance the final conversion of monomer.... The free radical polymerization of styrene in water in the presence of β-cyclodextrin (β-CD) is described. It is found that β-CD could greatly accelerate the polymerization, enhance the final conversion of monomer. The particle-size distribution of the final polymer is also improved than that without β-CD in the system. 展开更多
关键词 CYCLODEXTRIN polymerization conversion polymer particles.
下载PDF
PREPARATION AND PROPERTIES OF SILICONE-ACRYLATE COPOLYMER LATEX
4
作者 杨慕杰 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2004年第3期215-218,共4页
Silicone-acrylate copolymer latex was prepared through three different polymerization processes, i.e., the batch process, preemulsified monomer addition and the monomer addition process. The results revealed that the ... Silicone-acrylate copolymer latex was prepared through three different polymerization processes, i.e., the batch process, preemulsified monomer addition and the monomer addition process. The results revealed that the monomer addition process is a desirable approach to produce narrow particle size distribution latex with higher polymerization conversion and less amount of coagulum. The effect of silicone content on the glossiness and water absorption of latex film was investigated and the results showed that the glossiness of latex film is improved up to a silicone content of 10% of total monomers, but becomes impaired thereafter, whereas water absorption is reduced accordingly. 展开更多
关键词 Silicone-acrylate latex polymerization conversion Latex film properties Water absorption
下载PDF
Inverted polymer solar cells with Zn_2SnO_4 nanoparticles as the electron extraction layer
5
作者 Xiao-Juan Huang Xiang Yao +4 位作者 Wen-Zhan Xu Kai Wang Fei Huang Xiong Gong Yong Cao 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第8期1755-1759,共5页
In this study, we report narrow-size distribution Zn_2SnO_4(ZSO) nanoparticles, which are produced by low-temperature solution-processed used as the electron extraction layer(EEL) in the inverted polymer solar ce... In this study, we report narrow-size distribution Zn_2SnO_4(ZSO) nanoparticles, which are produced by low-temperature solution-processed used as the electron extraction layer(EEL) in the inverted polymer solar cells(i-PSCs). Moreover, poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN) is used to modify the surface properties of ZSO thin film. By using the ZSO NPs/PFN as the EEL, the i-PSCs fabricated by poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b0] dithio-phene-2,6-diyl-altethylhexyl-3-fluorothithieno [3,4-b]thiophene-2-carboxylate-4,6-diyl](PTB7) blended with(6,6)-phenyl-C_(71)-butyric acid methylester(PC_(71)BM) bulk heterojunction(BHJ) composite, exhibits a power conversion efficiency(PCE) of 8.44%, which is nearly 10% enhancement as compared with that of7.75% observed from the i-PSCs by PTB7:PC_(71)BM BHJ composite using the ZnO/PFN EEL. The enhanced PCE is originated from improved interfacial contact between the EEL with BHJ active layer and good energy level alignment between BHJ active layer and the EEL. Our results indicate that we provide a simple way to boost efficiency of i-PSCs. 展开更多
关键词 Electron transport layer Zn_2SnO_4 nanoparticles Bulk heterojunction Power conversion efficiency Inverted polymer solar cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部