期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Experimental and Numerical Studies on Sea Sand Concrete Filled Stainless Steel Tube with Inner FRP Tube Subjected to Axial Compression
1
作者 ZENG Lan YU Wen-lan +2 位作者 MO Zi-yong HUANG Shi-qing YUAN Hong 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期272-287,共16页
Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular... Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios. 展开更多
关键词 sea-sand concrete(SSC) confined concrete column fibre-reinforced polymer(FRP)tube stainless steel tube axial compression
下载PDF
Mechanical behavior of concrete filled glass fiber reinforced polymer-steel tube under cyclic loading 被引量:3
2
作者 Chun-yang ZHU Ying-hua ZHAO +1 位作者 Shuang GAO Xiao-fei LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第11期778-788,共11页
The mechanical behavior of concrete-filled glass fiber reinforced polymer(GFRP)-steel tube structures under combined seismic loading is investigated in this study. Four same-sized specimens with different GFRP layout ... The mechanical behavior of concrete-filled glass fiber reinforced polymer(GFRP)-steel tube structures under combined seismic loading is investigated in this study. Four same-sized specimens with different GFRP layout modes were tested by a quasi-static test system. Finite element analysis(FEA) was also undertaken and the results were presented. Results of the numerical simulation compared well with those from experimental tests. Parametric analysis was conducted by using the FE models to evaluate the effects of GFRP thickness, axial compression rate, and cross sectional steel ratio. The experimental and numerical results show that the technique of GFRP strengthening is effective in improving the seismic performance of traditional concrete-filled steel tubes, with variations related to different GFRP layout modes. 展开更多
关键词 Concrete-filled glass fiber reinforced polymer(GFRP)-steel tube SEISMIC Energy dissipation Stiffness degradation
原文传递
World’s first spaceflight on-orbit demonstration of a flexible solar array system based on shape memory polymer composites 被引量:10
3
作者 LAN Xin LIU LiWu +14 位作者 ZHANG FengHua LIU ZhengXian WANG LinLin LI QiFeng PENG Fan HAO SiDa DAI WenXu WAN Xue TANG Yong WANG Mian HAO YanYan YANG Yang YANG Cheng LIU YanJu LENG JinSong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第8期1436-1451,共16页
With a 10%reversible compressive strain in more than 10 deformation cycles,the shape memory polymer composites(SMPCs)could be used for deployable structure and releasing mechanism.In this paper,without traditional ele... With a 10%reversible compressive strain in more than 10 deformation cycles,the shape memory polymer composites(SMPCs)could be used for deployable structure and releasing mechanism.In this paper,without traditional electro-explosive devices or motors/controllers,the deployable SMPC flexible solar array system(SMPC-FSAS)is studied,developed,ground-based tested,and finally on-orbit validated.The epoxy-based SMPC is used for the rolling-out variable-stiffness beams as a structural frame as well as an actuator for the flexible blanket solar array.The releasing mechanism is primarily made of the cyanate-based SMPC,which has a high locking stiffness to withstand 50 g gravitational acceleration and a large unlocking displacement of 10 mm.The systematical mechanical and thermal qualification tests of the SMPC-FSAS flight hardware were performed,including sinusoidal sweeping vibration,shocking,acceleration,thermal equilibrium,thermal vacuum cycling,and thermal cycling test.The locking function of the SMPC releasing mechanisms was in normal when launching aboard the SJ20 Geostationary Satellite on 27 Dec.,2019.The SMPC-FSAS flight hardware successfully unlocked and deployed on 5 Jan.,2020 on geostationary orbit.The triggering signal of limit switches returned to ground at the 139 s upon heating,which indicated the successful unlocking function of SMPC releasing mechanisms.A pair of epoxy-based SMPC rolled variable-stiffness tubes,which clapped the flexible blanket solar array,slowly deployed and finally approached an approximate 100%shape recovery ratio within 60 s upon heating.The study and on-orbit successful validation of the SMPC-FSAS flight hardware could accelerate the related study and associated productions to be used for the next-generation releasing mechanisms as well as space deployable structures,such as new releasing mechanisms with low-shocking,testability and reusability,and ultra-large space deployable solar arrays. 展开更多
关键词 shape memory polymer composite releasing mechanism shape memory polymer composite tubes flexible solar array
原文传递
Experimental and Stowing/Deploying Dynamical Simulation of Lenticular Carbon Fiber Reinforced Polymer Thin-Walled Tubular Space Boom 被引量:2
4
作者 李瑞雄 陈务军 付功义 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第1期58-64,共7页
The stowing and deploying experiment was conducted for three 700 mm long thin-walled tubes,and the structural behavior characteristics parameters were measured clearly,including strain,deformation and wrapping moment.... The stowing and deploying experiment was conducted for three 700 mm long thin-walled tubes,and the structural behavior characteristics parameters were measured clearly,including strain,deformation and wrapping moment.3D finite element models(FEM)were built subsequently and explicit dynamic method was used to simulate the stowing and deploying of the lenticular carbon fiber reinforced polymer(CFRP)thin-walled tubular space boom,which was designed as four-ply(45°/-45°/45°/-45°)lay-up.The stress and energy during the wrapping process were got and compared with different wrapping angular velocity,the reasonable wrapping angular velocity and effective method were conformed,and structural behavior characteristics were obtained.The results were compared and discussed as well,and the results show that the numerical results by 0.628 rad/s velocity agree well with the measured values.In this paper,the numerical procedure and experimental results are valuable to the optimization design of CFRP thin-walled tubular space boom and future research. 展开更多
关键词 lenticular carbon fiber reinforced polymer thin-walled tube space boom explicit method stowing and deploying wrapping moment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部