Star-branched polyamide 6 was prepared via anionic ring-opening polymerization of ε-caprolactam in the presence of a simple benzene-centered trifunctional activator of N,N',N"-trimesoyltricaprolactam. A high polyme...Star-branched polyamide 6 was prepared via anionic ring-opening polymerization of ε-caprolactam in the presence of a simple benzene-centered trifunctional activator of N,N',N"-trimesoyltricaprolactam. A high polymer yields of above 95% were achieved at 160 ℃ for 15 min utilizing ε-caprolactam magnesium bromide as a catalyst. Compared with its linear counterpart, the resultant star-branched polyamide 6 showed smaller relative viscosity (1.51 ), decreased melting temperature (218 ℃) and lower crystallinity (24.2%). The specific properties demonstrated the existence of a star-branched structure and provided potential advantages in engineering applications.展开更多
基金supported by a grant from the National High Technology Research and Development Program of China(No.2014AA021201)the National Basic Research Program of China(No.2012CB721104)+1 种基金China Postdoctoral Science Foundation(No.2014M551574)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Star-branched polyamide 6 was prepared via anionic ring-opening polymerization of ε-caprolactam in the presence of a simple benzene-centered trifunctional activator of N,N',N"-trimesoyltricaprolactam. A high polymer yields of above 95% were achieved at 160 ℃ for 15 min utilizing ε-caprolactam magnesium bromide as a catalyst. Compared with its linear counterpart, the resultant star-branched polyamide 6 showed smaller relative viscosity (1.51 ), decreased melting temperature (218 ℃) and lower crystallinity (24.2%). The specific properties demonstrated the existence of a star-branched structure and provided potential advantages in engineering applications.