Two vinyl‐functionalized chiral2,2'‐bis(diphenylphosphino)‐1,1'‐binaphthyl(BINAP)ligands,(S)‐4,4'‐divinyl‐BINAP and(S)‐5,5'‐divinyl‐BINAP,were successfully synthesized.Chiral BINAP‐based por...Two vinyl‐functionalized chiral2,2'‐bis(diphenylphosphino)‐1,1'‐binaphthyl(BINAP)ligands,(S)‐4,4'‐divinyl‐BINAP and(S)‐5,5'‐divinyl‐BINAP,were successfully synthesized.Chiral BINAP‐based porous organic polymers(POPs),denoted as4‐BINAP@POPs and5‐BINAP@POPs,were efficiently prepared via the copolymerization of vinyl‐functionalized BINAP with divinyl benzene under solvothermal conditions.Thorough characterization using nuclear magnetic resonance spectroscopy,thermogravimetric analysis,extended X‐ray absorption fine structure analysis,and high‐angle annular dark‐field scanning transmission electron microscopy,we confirmed that chiral BINAP groups were successfully incorporated into the structure of the materials considered to contain hierarchical pores.Ru was introduced as a catalytic species into the POPs using different synthetic routes.Systematic investigation of the resultant chiral Ru/POP catalysts for heterogeneous asymmetric hydrogenation ofβ‐keto esters revealed their excellent chiral inducibility as well as high activity and stability.Our work thereby paves a path towards the use of advanced hierarchical porous polymers as solid chiral platforms for heterogeneous asymmetric catalysis.展开更多
This study investigated the conversion of furfural to 5-hydroxymethylfurfural(HMF)and further to levulinic acid/ester in dimethoxymethane under acidic conditions,with the particular focus on understanding the mechanis...This study investigated the conversion of furfural to 5-hydroxymethylfurfural(HMF)and further to levulinic acid/ester in dimethoxymethane under acidic conditions,with the particular focus on understanding the mechanism for polymer formation.The results showed that furfural could react with dimethoxymethane via electrophilic substitution reaction to form HMF or the ether/acetal of HMF,which were further converted to levulinic acid and methyl levulinate.The polymerization of furfural and the cross-polymerization between dimethoxymethane and the levulinic acid/ester produced were the main side reactions leading to the decreased yields of levulinic acid/ester.Comparing to the other solvent,methanol as the co-solvent helped to alleviate but not totally inhibited the occurrences of the polymerization,as the polymerization reactions via aldol condensation did not eliminate the C=O functionalities.As a consequence,the polymerization reactions continued to proceed.Other co-solvent used such as guaiacol,dimethyl sulfoxide and acetone interfered with the transformation of furfural to HMF or aided the polymerization reactions.The polymer produced from the reactions between furfural and DMM was different from that produced from levulinic acid/ester.The former had a higher crystallinity,while the latter was more aliphatic.The DRIFTS and TG-MS studies showed that the polymer had the carboxylic group,methyl group and the aliphatic structure in the skeleton.The removal of these functionalities was accompanied by the aromatization of the polymer.The condensation of DMM with levulinic acid/ester was the key reason for the diminished production of levulinic acid/ester.展开更多
We report here an approach toward the synthesis of optically active polyacrylamide bearing amino acid moieties, poly[Nmethacryloyl L-leucine methyl ester] (PMALM), with controlled average number molecular weight (M...We report here an approach toward the synthesis of optically active polyacrylamide bearing amino acid moieties, poly[Nmethacryloyl L-leucine methyl ester] (PMALM), with controlled average number molecular weight (Mn) and relatively narrow polydispersity index (PDI, Mw/Mn 〈 1.3) by atom transfer radical polymerization (ATRP) using initiating system methyl 2-bromopropionate/CuBr/tris(2-dimethylaminoethyl) amine. The optical properties of the resulting polymers were evaluated from specific optical rotation value and CD spectra.展开更多
In this research,a promising class of insensitive and high-energy dense biopolymers,which contain nitrogen-rich 1H-tetrazol-1-yl acetate and nitrate ester functional groups,was successfully synthesized through tetrazo...In this research,a promising class of insensitive and high-energy dense biopolymers,which contain nitrogen-rich 1H-tetrazol-1-yl acetate and nitrate ester functional groups,was successfully synthesized through tetrazole derivatization and nitration of cellulose and its micro-sized derivative(TNCN and TCMCN).Their molecular structures,physicochemical properties,thermal behaviors,mechanical sensitivities and detonation performances were studied and compared to those of the corresponding nitrocellulose and nitrated micro-sized cellulose(NCN and CMCN).The developed energetic TNCN and TCMCN exhibited insensitive character with excellent features such as density of 1.710 g/cm3and 1.726 g/cm3,nitrogen content of 20.95%and 22.59%,and detonation velocity of 7552 m/s and 7786 m/s,respectively,and thereby demonstrate their potential applications as new generation of energetic biopolymers to substitute the common NCN.Furthermore,thermal results showed that the designed nitrated and chemical modified cellulosic biopolymers displayed good thermal stability with multistep decomposition mechanism.These results enrich future prospects for the design of promising insensitive and high-energy dense cellulose-rich materials and commence a new chapter in this field.展开更多
New thermoplastic norbornene polymers containing ester groups were prepared byvinylic polymerization of norbornene-carboxylic acid esters by Pd(Ⅱ)-based catalysts. Themonomers were obtained by Diels-Alder reaction of...New thermoplastic norbornene polymers containing ester groups were prepared byvinylic polymerization of norbornene-carboxylic acid esters by Pd(Ⅱ)-based catalysts. Themonomers were obtained by Diels-Alder reaction of cyclopentadiene with acrylic acid esters(methyl and butyl) as mixtures of endo/exo (ratio 40/60)-isomers and were converted topolymers in 60%~70% conversion. The endo-isomer was less reactive than the exo-isomer.To obtain higher molecular weight the more reactive pure exo-isomer was prepared andpolymerized with the Pd (Ⅱ)-catalysts, tetrakis (acetonitrile) Pd (Ⅱ) bis (tetrafluoroborate)and (η3-allyl)Pd(Ⅱ)SbF6, in high conversion. These polymers showed high glass transitiontemperatures, high transparency and good solubility in common solvents.展开更多
Hyperbranched poly(amine-ester) (HBPAE) was synthesized via pseudo-one-step process between trimethylolpropane as a core molecule and N, N-diethylol-3-amine methylpropionate as the AB2 branched monomer. The prepared p...Hyperbranched poly(amine-ester) (HBPAE) was synthesized via pseudo-one-step process between trimethylolpropane as a core molecule and N, N-diethylol-3-amine methylpropionate as the AB2 branched monomer. The prepared polymer was analyzed by IR, GPC, 1H-NMR and thermal analysis (TGA and DSC). The performance of the polymer in cement was tested by measuring the effect of 1, 3 and 5 wt% of HBPAE solutions on the properties of Ordinary Portland Cement. Water of consistency, setting times, bulk density, apparent porosity, compressive strength and combined water content of the polymer/cement pastes were studied. The results showed that water of consistency and apparent porosity decreased while setting times, compressive strength, combined water and bulk density increased with the polymer addition.展开更多
The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discha...The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.展开更多
Polyurethane/(vinyl ester resin) interpenetrating polymer network (PU/VER IPN) materials with broad temperatureranges and excellent damping properties from Iow temperature to room temperature were prepared. The influe...Polyurethane/(vinyl ester resin) interpenetrating polymer network (PU/VER IPN) materials with broad temperatureranges and excellent damping properties from Iow temperature to room temperature were prepared. The influenceof comonomers and component ratios on the compatibility and damping properties of IPN materials was studied byDMA which indicates that such properties are improved by introducing acrylic esters instead of polystyrene (PSt)into VER comonomer system. The detected results of microstructure by AFM show that the phase ranges of thedual-phase continuous IPN materials obtained are both in nanometer scale. The results of mechanical propertiesshow that IPN materials show the regulation from elastic deformation to brittle deformation with the increase of VERproportion.展开更多
A novel AB3-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were character...A novel AB3-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were characterized via FTIR and NMR spectroscopy and thermal analysis, and the average degree of branching of the polymers was estimated to be 0.75. The polymers with abundant acetyl end groups were found to be amorphous with lower intrinsic viscosity, better thermal stability and excellent solubility.展开更多
A series of aliphatic biodegradable poly(ether-ester)s based on poly(butylene succinate)(PBS)as hard segment and poly(tetramethylene oxide)(PTMO,M_n=1 000 g/mol) as soft segment were synthesized.The composit...A series of aliphatic biodegradable poly(ether-ester)s based on poly(butylene succinate)(PBS)as hard segment and poly(tetramethylene oxide)(PTMO,M_n=1 000 g/mol) as soft segment were synthesized.The composition dependence of thermal behavior,morphology and mechanical properties was investigated by differential scanning calorimetry(DSC),atomic force microscopy(AFM),and tensile testing.The crystallization temperature(T_c) and melting temperature(T_m) of the PBS block within poly(ether-ester)s decrease steadily at first,but decrease sharply with PTMO content above 50 wt%.Two crystallization peaks were detected for PTMO in PBSPTMO60 sample,suggesting the occurrence of fractionated crystallization.The crystallization enthalpies(△H_c) and melting enthalpies(△H_m) of PBS block decrease at first,then increase as PTMO content increases further.AFM has demonstrated that phase-separated morphology transforms from a phase of continuous hard matrix to one of continuous soft matrix containing isolated hard domain as PTMO content is increased.Finally,the results of tensile testing show that the poly(ether-ester)s present the behavior of plastics when PTMO content is below 40 wt%,and of thermoplastic elastomers with PTMO content above 50 wt%.By varying the composition of copolymer,the aliphatic poly(ether-ester)s plastics,or especially biodegradable aliphatic poly(ether-ester)s thermoplastic elastomers can be obtained.展开更多
Two novel biodegradable thermosensitive polyphosphazenes with lactic acid ester and methoxyethoxyethoxy side groups were synthesized via the macromolecular substitution reactions of poly(dichlorophosphazene) with the ...Two novel biodegradable thermosensitive polyphosphazenes with lactic acid ester and methoxyethoxyethoxy side groups were synthesized via the macromolecular substitution reactions of poly(dichlorophosphazene) with the sodium salt of lactic acid ester and sodium methoxyethoxyethoxide.Their structures were confirmed by ^(31)p NMR,~1H NMR,^(13)C NMR,IR,DSC,and elemental analysis.The lower critical solution temperature(LCST) behavior in water and in vitro degradation property of the polymers was investigated.The...展开更多
This paper described the first example of polyamidoamine dendrimers ester(PAMAM) used as a gel electrolyte with a short-chain polyethylene glycol (MPEG-400) as aplasticizer. The polymer films are solid and sticky. Bac...This paper described the first example of polyamidoamine dendrimers ester(PAMAM) used as a gel electrolyte with a short-chain polyethylene glycol (MPEG-400) as aplasticizer. The polymer films are solid and sticky. Background cyclic voltammetry (CV) shows apotential window between +0.7 and -0.7 V vs. Ag/AgCl. The voltammetry of ferrocene and7,7,8,8-tetracyanoquinodimethane (TCNQ) indicates that diffusion coefficients are in the range of10^(-8) -10^(-9) cm^2/s. Ionic conductivities are approximately 10^(-6) S/cm. Similar films usingdimethyl sulfoxide (DMSO) as a plasticizer instead of MPEG-400 have demonstrated ionicconductivities of 10^(-4) S/cm and reversible voltammetry. However, UV spectropho-tometry shows that70% of the DMSO is lost under vacuum, indicating the difficulty in quantifying the DMSO contentwhen exposed to vacuum.展开更多
Bactericidal activity of some arginine based biodegradable polymers-PEURs (poly (ester urethane)s) and PEUs (poly (ester urea)s) with low cytotoxicity was studied in in vitro experiments. Various bacterial str...Bactericidal activity of some arginine based biodegradable polymers-PEURs (poly (ester urethane)s) and PEUs (poly (ester urea)s) with low cytotoxicity was studied in in vitro experiments. Various bacterial strains both Gram-positive and Gram-negative were used to explore the bactericidal activity of the cationic polymers. As the test objects, the following microorganisms were used: Bacillus subtilis, Staphylococcus aureus, Mycobacterium album, Pseudomonas fluorescens, Escherichia coli, Actinomyces griseus and Aspergillus niger. The obtained results showed that the new cationic polymers suppressed the growth of the studied microorganisms and the bactericidal activity of the tested cationic polymers strongly depending on their chemical structure.展开更多
Flexible oxyethylene-ether was introduced into the aromatic copolyesters and copoly (ester-amide)s to reduce the melting point of resulting polymers. The melting point was greatly reduced to 200 degrees C or even lowe...Flexible oxyethylene-ether was introduced into the aromatic copolyesters and copoly (ester-amide)s to reduce the melting point of resulting polymers. The melting point was greatly reduced to 200 degrees C or even lower in some cases, and the molecular weight was satisfactorily high as reflected by inherent viscosity. The polymers exhibited high thermal stability and good mechanical properties as determined by TGA and mechanical tests. The copolyester showed better crystallinity and liquid crystallinity than corresponding copoly (ester-amide)s with similar monomer composition as reflected by POM observation and WAXD study. The melting points for both copolyesters and copoly (ester-amide)s showed great dependence on the p-acetoxybenzoic acid (PAB) content in monomer composition and reached the lowest value when PAB was 29 mol%.展开更多
A new methodology was advanced that mesogenic cores appeared after theformation of urethane groups and during the monomer-to-polymer transition. A newdiphenol monomer, bis(4'-hydroxy-phenyl)-toluene-2 (BHPTU), was...A new methodology was advanced that mesogenic cores appeared after theformation of urethane groups and during the monomer-to-polymer transition. A newdiphenol monomer, bis(4'-hydroxy-phenyl)-toluene-2 (BHPTU), was obtainedby the reaction of 2,4-tolulene diisocyanate with hydroquinone in dioxane or N,N-dimethyl-acetandde. The reaction process was monitored by FTIR, and the product was investigated bylH NMR and elemental analysis (EA). A liquid crystalline poly(urethane-ester) was obtainedusing the BHPTU monomer.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020400)~~
文摘Two vinyl‐functionalized chiral2,2'‐bis(diphenylphosphino)‐1,1'‐binaphthyl(BINAP)ligands,(S)‐4,4'‐divinyl‐BINAP and(S)‐5,5'‐divinyl‐BINAP,were successfully synthesized.Chiral BINAP‐based porous organic polymers(POPs),denoted as4‐BINAP@POPs and5‐BINAP@POPs,were efficiently prepared via the copolymerization of vinyl‐functionalized BINAP with divinyl benzene under solvothermal conditions.Thorough characterization using nuclear magnetic resonance spectroscopy,thermogravimetric analysis,extended X‐ray absorption fine structure analysis,and high‐angle annular dark‐field scanning transmission electron microscopy,we confirmed that chiral BINAP groups were successfully incorporated into the structure of the materials considered to contain hierarchical pores.Ru was introduced as a catalytic species into the POPs using different synthetic routes.Systematic investigation of the resultant chiral Ru/POP catalysts for heterogeneous asymmetric hydrogenation ofβ‐keto esters revealed their excellent chiral inducibility as well as high activity and stability.Our work thereby paves a path towards the use of advanced hierarchical porous polymers as solid chiral platforms for heterogeneous asymmetric catalysis.
基金This work was supported by the National Natural Science Foundation of China (No. 51876080)the Strategic International Scientific and Technological Innovation Cooperation Special Funds of National Key R&D Program of China (No. 2016YFE0204000)+3 种基金the Program for Taishan Scholars of Shandong Province Governmentthe Recruitment Program of Global Young Experts (Thousand Youth Talents Plan)the Natural Science Fund of Shandong Province (ZR2017BB002)the Key R&D Program of Shandong Province (2018GSF116014)
文摘This study investigated the conversion of furfural to 5-hydroxymethylfurfural(HMF)and further to levulinic acid/ester in dimethoxymethane under acidic conditions,with the particular focus on understanding the mechanism for polymer formation.The results showed that furfural could react with dimethoxymethane via electrophilic substitution reaction to form HMF or the ether/acetal of HMF,which were further converted to levulinic acid and methyl levulinate.The polymerization of furfural and the cross-polymerization between dimethoxymethane and the levulinic acid/ester produced were the main side reactions leading to the decreased yields of levulinic acid/ester.Comparing to the other solvent,methanol as the co-solvent helped to alleviate but not totally inhibited the occurrences of the polymerization,as the polymerization reactions via aldol condensation did not eliminate the C=O functionalities.As a consequence,the polymerization reactions continued to proceed.Other co-solvent used such as guaiacol,dimethyl sulfoxide and acetone interfered with the transformation of furfural to HMF or aided the polymerization reactions.The polymer produced from the reactions between furfural and DMM was different from that produced from levulinic acid/ester.The former had a higher crystallinity,while the latter was more aliphatic.The DRIFTS and TG-MS studies showed that the polymer had the carboxylic group,methyl group and the aliphatic structure in the skeleton.The removal of these functionalities was accompanied by the aromatization of the polymer.The condensation of DMM with levulinic acid/ester was the key reason for the diminished production of levulinic acid/ester.
基金the National Natural Science Foundation of China (No. 20474068) the Natural Science Foundation of Guangdong Province (No. 021471) are gratefully acknowledged.
文摘We report here an approach toward the synthesis of optically active polyacrylamide bearing amino acid moieties, poly[Nmethacryloyl L-leucine methyl ester] (PMALM), with controlled average number molecular weight (Mn) and relatively narrow polydispersity index (PDI, Mw/Mn 〈 1.3) by atom transfer radical polymerization (ATRP) using initiating system methyl 2-bromopropionate/CuBr/tris(2-dimethylaminoethyl) amine. The optical properties of the resulting polymers were evaluated from specific optical rotation value and CD spectra.
基金financial support and the necessary facilities for this study by the Ecole Militaire polytechnique and the Ludwig-Maximilian University of Munich(LMU)。
文摘In this research,a promising class of insensitive and high-energy dense biopolymers,which contain nitrogen-rich 1H-tetrazol-1-yl acetate and nitrate ester functional groups,was successfully synthesized through tetrazole derivatization and nitration of cellulose and its micro-sized derivative(TNCN and TCMCN).Their molecular structures,physicochemical properties,thermal behaviors,mechanical sensitivities and detonation performances were studied and compared to those of the corresponding nitrocellulose and nitrated micro-sized cellulose(NCN and CMCN).The developed energetic TNCN and TCMCN exhibited insensitive character with excellent features such as density of 1.710 g/cm3and 1.726 g/cm3,nitrogen content of 20.95%and 22.59%,and detonation velocity of 7552 m/s and 7786 m/s,respectively,and thereby demonstrate their potential applications as new generation of energetic biopolymers to substitute the common NCN.Furthermore,thermal results showed that the designed nitrated and chemical modified cellulosic biopolymers displayed good thermal stability with multistep decomposition mechanism.These results enrich future prospects for the design of promising insensitive and high-energy dense cellulose-rich materials and commence a new chapter in this field.
文摘New thermoplastic norbornene polymers containing ester groups were prepared byvinylic polymerization of norbornene-carboxylic acid esters by Pd(Ⅱ)-based catalysts. Themonomers were obtained by Diels-Alder reaction of cyclopentadiene with acrylic acid esters(methyl and butyl) as mixtures of endo/exo (ratio 40/60)-isomers and were converted topolymers in 60%~70% conversion. The endo-isomer was less reactive than the exo-isomer.To obtain higher molecular weight the more reactive pure exo-isomer was prepared andpolymerized with the Pd (Ⅱ)-catalysts, tetrakis (acetonitrile) Pd (Ⅱ) bis (tetrafluoroborate)and (η3-allyl)Pd(Ⅱ)SbF6, in high conversion. These polymers showed high glass transitiontemperatures, high transparency and good solubility in common solvents.
文摘Hyperbranched poly(amine-ester) (HBPAE) was synthesized via pseudo-one-step process between trimethylolpropane as a core molecule and N, N-diethylol-3-amine methylpropionate as the AB2 branched monomer. The prepared polymer was analyzed by IR, GPC, 1H-NMR and thermal analysis (TGA and DSC). The performance of the polymer in cement was tested by measuring the effect of 1, 3 and 5 wt% of HBPAE solutions on the properties of Ordinary Portland Cement. Water of consistency, setting times, bulk density, apparent porosity, compressive strength and combined water content of the polymer/cement pastes were studied. The results showed that water of consistency and apparent porosity decreased while setting times, compressive strength, combined water and bulk density increased with the polymer addition.
文摘The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.
基金This work was supported by the Natural Science Foundation of Heilongjiang Province under the E00-17.
文摘Polyurethane/(vinyl ester resin) interpenetrating polymer network (PU/VER IPN) materials with broad temperatureranges and excellent damping properties from Iow temperature to room temperature were prepared. The influenceof comonomers and component ratios on the compatibility and damping properties of IPN materials was studied byDMA which indicates that such properties are improved by introducing acrylic esters instead of polystyrene (PSt)into VER comonomer system. The detected results of microstructure by AFM show that the phase ranges of thedual-phase continuous IPN materials obtained are both in nanometer scale. The results of mechanical propertiesshow that IPN materials show the regulation from elastic deformation to brittle deformation with the increase of VERproportion.
文摘A novel AB3-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were characterized via FTIR and NMR spectroscopy and thermal analysis, and the average degree of branching of the polymers was estimated to be 0.75. The polymers with abundant acetyl end groups were found to be amorphous with lower intrinsic viscosity, better thermal stability and excellent solubility.
基金Funded by the National Natural Science Foundation of China(No.50873071)the Teaching and Research Award Program for Outstanding Young Professors in Higher Education Institute,MOE,China
文摘A series of aliphatic biodegradable poly(ether-ester)s based on poly(butylene succinate)(PBS)as hard segment and poly(tetramethylene oxide)(PTMO,M_n=1 000 g/mol) as soft segment were synthesized.The composition dependence of thermal behavior,morphology and mechanical properties was investigated by differential scanning calorimetry(DSC),atomic force microscopy(AFM),and tensile testing.The crystallization temperature(T_c) and melting temperature(T_m) of the PBS block within poly(ether-ester)s decrease steadily at first,but decrease sharply with PTMO content above 50 wt%.Two crystallization peaks were detected for PTMO in PBSPTMO60 sample,suggesting the occurrence of fractionated crystallization.The crystallization enthalpies(△H_c) and melting enthalpies(△H_m) of PBS block decrease at first,then increase as PTMO content increases further.AFM has demonstrated that phase-separated morphology transforms from a phase of continuous hard matrix to one of continuous soft matrix containing isolated hard domain as PTMO content is increased.Finally,the results of tensile testing show that the poly(ether-ester)s present the behavior of plastics when PTMO content is below 40 wt%,and of thermoplastic elastomers with PTMO content above 50 wt%.By varying the composition of copolymer,the aliphatic poly(ether-ester)s plastics,or especially biodegradable aliphatic poly(ether-ester)s thermoplastic elastomers can be obtained.
基金the National Natural Foundation of China(No. 20364002)the Natural Science Foundation of Yunnan Province(No.2005B0027 M),China
文摘Two novel biodegradable thermosensitive polyphosphazenes with lactic acid ester and methoxyethoxyethoxy side groups were synthesized via the macromolecular substitution reactions of poly(dichlorophosphazene) with the sodium salt of lactic acid ester and sodium methoxyethoxyethoxide.Their structures were confirmed by ^(31)p NMR,~1H NMR,^(13)C NMR,IR,DSC,and elemental analysis.The lower critical solution temperature(LCST) behavior in water and in vitro degradation property of the polymers was investigated.The...
基金This work was financially supported by the National Natural Science Foundation of China (No. 29875018) the Natural Science Foundation of Gansu Province (No. ZS991-A25-008-Z)the Doctorate Foundation of Northwestern Politech-nical University (No. CX200
文摘This paper described the first example of polyamidoamine dendrimers ester(PAMAM) used as a gel electrolyte with a short-chain polyethylene glycol (MPEG-400) as aplasticizer. The polymer films are solid and sticky. Background cyclic voltammetry (CV) shows apotential window between +0.7 and -0.7 V vs. Ag/AgCl. The voltammetry of ferrocene and7,7,8,8-tetracyanoquinodimethane (TCNQ) indicates that diffusion coefficients are in the range of10^(-8) -10^(-9) cm^2/s. Ionic conductivities are approximately 10^(-6) S/cm. Similar films usingdimethyl sulfoxide (DMSO) as a plasticizer instead of MPEG-400 have demonstrated ionicconductivities of 10^(-4) S/cm and reversible voltammetry. However, UV spectropho-tometry shows that70% of the DMSO is lost under vacuum, indicating the difficulty in quantifying the DMSO contentwhen exposed to vacuum.
文摘Bactericidal activity of some arginine based biodegradable polymers-PEURs (poly (ester urethane)s) and PEUs (poly (ester urea)s) with low cytotoxicity was studied in in vitro experiments. Various bacterial strains both Gram-positive and Gram-negative were used to explore the bactericidal activity of the cationic polymers. As the test objects, the following microorganisms were used: Bacillus subtilis, Staphylococcus aureus, Mycobacterium album, Pseudomonas fluorescens, Escherichia coli, Actinomyces griseus and Aspergillus niger. The obtained results showed that the new cationic polymers suppressed the growth of the studied microorganisms and the bactericidal activity of the tested cationic polymers strongly depending on their chemical structure.
基金This work was supported by the National Natural Science Foundation of China and the National Key Projects for Fundamental Research"Macromolecular Condensed State",The State Science and Technology Commission of China.
文摘Flexible oxyethylene-ether was introduced into the aromatic copolyesters and copoly (ester-amide)s to reduce the melting point of resulting polymers. The melting point was greatly reduced to 200 degrees C or even lower in some cases, and the molecular weight was satisfactorily high as reflected by inherent viscosity. The polymers exhibited high thermal stability and good mechanical properties as determined by TGA and mechanical tests. The copolyester showed better crystallinity and liquid crystallinity than corresponding copoly (ester-amide)s with similar monomer composition as reflected by POM observation and WAXD study. The melting points for both copolyesters and copoly (ester-amide)s showed great dependence on the p-acetoxybenzoic acid (PAB) content in monomer composition and reached the lowest value when PAB was 29 mol%.
文摘A new methodology was advanced that mesogenic cores appeared after theformation of urethane groups and during the monomer-to-polymer transition. A newdiphenol monomer, bis(4'-hydroxy-phenyl)-toluene-2 (BHPTU), was obtainedby the reaction of 2,4-tolulene diisocyanate with hydroquinone in dioxane or N,N-dimethyl-acetandde. The reaction process was monitored by FTIR, and the product was investigated bylH NMR and elemental analysis (EA). A liquid crystalline poly(urethane-ester) was obtainedusing the BHPTU monomer.