The Lanping sedimentary basin has experienced a five-stage evolution since the late Paleozoic: ocean-continent transformation (late Paleozoic to early mid-Triassic); intracontinental rift basin (late mid-Triassic ...The Lanping sedimentary basin has experienced a five-stage evolution since the late Paleozoic: ocean-continent transformation (late Paleozoic to early mid-Triassic); intracontinental rift basin (late mid-Triassic to early Jurassic); down-warped basin (middle to late Jurassic); foreland basin (Cretaceous); and strike-slip basin (Cenozoic). Three major genetic types of Ag-Cu polymetallic ore deposits, including the reworked hydrothermal sedimentary, sedimentary-hydrothermally reworked and hydrothermal vein types, are considered to be the products of basin fluid activity at specific sedimentary-tectonic evolutionary stages. Tectonic differences of the different evolutionary stages resulted in considerable discrepancy in the mechanisms of formation-transportation, migration direction and emplacement processes of the basin fluids, thus causing differences in mineralization styles as well as in genetic types of ore deposit.展开更多
Fractal and multi-fractal content area method finds application in a wide variety of geological,geochemical and geophysical fields.In this study,the fractal content-gradient method was used on1:10,000 scale to deline...Fractal and multi-fractal content area method finds application in a wide variety of geological,geochemical and geophysical fields.In this study,the fractal content-gradient method was used on1:10,000 scale to delineate geochemical anomalies associated with copper mineralization.Analysis of geochemical data from the Yangla super large Cu-Pb-Zn polymetallic ore district using the fractal content-gradient method,combined with other geological data from this area,indicates that oreprospecting in the ore district should focus on Cu as the main metal and Pb-Zn and Au as the auxiliary metals.The types of deposits include(in chronological order) re-formed sedimentary exhalative(SEDEX),skarns,porphyries,and hydrothermal vein-type deposits.Three ore-prospecting targets are divided on a S-N basis:(1) the Qulong exploration area,in which the targets are porphyry-type Cu deposits;(2) the Zongya exploration area,where the targets are porphyry-type Cu and hydrothermal vein-type Cu-Pb polymetallic deposits;and(3) the Zarelongma exploration area,characterized mainly skarn-type "Yangla-style" massive sulfide Cu-Pb deposits.Our study demonstrates that the fractal content-gradient method is convenient,simple,rapid,and direct for delineating geochemical anomalies and for outlining potential exploration targets.展开更多
基金supported by the National Natural Science Foundation of China under the grants 40573031 and 40772060the 973 National Basic Research Priorities Program(2006CB701402)+1 种基金the 111 Project(No.B07011)of the Ministry of Educationthe State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences under grant no.GPMR0531
文摘The Lanping sedimentary basin has experienced a five-stage evolution since the late Paleozoic: ocean-continent transformation (late Paleozoic to early mid-Triassic); intracontinental rift basin (late mid-Triassic to early Jurassic); down-warped basin (middle to late Jurassic); foreland basin (Cretaceous); and strike-slip basin (Cenozoic). Three major genetic types of Ag-Cu polymetallic ore deposits, including the reworked hydrothermal sedimentary, sedimentary-hydrothermally reworked and hydrothermal vein types, are considered to be the products of basin fluid activity at specific sedimentary-tectonic evolutionary stages. Tectonic differences of the different evolutionary stages resulted in considerable discrepancy in the mechanisms of formation-transportation, migration direction and emplacement processes of the basin fluids, thus causing differences in mineralization styles as well as in genetic types of ore deposit.
基金supported by the fund"Metallogenic Geodynamic Background,Process and Quantitative Evaluation of Super Large Fe-Cu Polymetallic Deposits,Qinghai Qimantag Area"(Grant No.1212011220929)from Beijing Key Laboratory of Land Resources Information Research and Development,China University of Geosciences,Beijing
文摘Fractal and multi-fractal content area method finds application in a wide variety of geological,geochemical and geophysical fields.In this study,the fractal content-gradient method was used on1:10,000 scale to delineate geochemical anomalies associated with copper mineralization.Analysis of geochemical data from the Yangla super large Cu-Pb-Zn polymetallic ore district using the fractal content-gradient method,combined with other geological data from this area,indicates that oreprospecting in the ore district should focus on Cu as the main metal and Pb-Zn and Au as the auxiliary metals.The types of deposits include(in chronological order) re-formed sedimentary exhalative(SEDEX),skarns,porphyries,and hydrothermal vein-type deposits.Three ore-prospecting targets are divided on a S-N basis:(1) the Qulong exploration area,in which the targets are porphyry-type Cu deposits;(2) the Zongya exploration area,where the targets are porphyry-type Cu and hydrothermal vein-type Cu-Pb polymetallic deposits;and(3) the Zarelongma exploration area,characterized mainly skarn-type "Yangla-style" massive sulfide Cu-Pb deposits.Our study demonstrates that the fractal content-gradient method is convenient,simple,rapid,and direct for delineating geochemical anomalies and for outlining potential exploration targets.