Polymetallic nodules and cobalt (Co)-rich crusts are enriched in platinum-group elements (PGEs),especially platinum (Pt) and may be important sinks of PGEs.At present,little information is available on PGEs in polymet...Polymetallic nodules and cobalt (Co)-rich crusts are enriched in platinum-group elements (PGEs),especially platinum (Pt) and may be important sinks of PGEs.At present,little information is available on PGEs in polymetallic nodules,and their geochemical characteristics and the causes of PGEs enrichment are unclear.Here PGEs of polymetallic nodules from abyssal basin in the Marcus-Wake Seamount area of the Northwest Pacific Ocean are reported and compared with the published PGEs data of polymetallic nodules and Co-rich crusts in the Pacific.The total PGEs (ΣPGE) content of polymetallic nodules in study area is 258×10^–9) in average,markedly higher than that of Clarion-Clipperton Zone (CCZ) nodules (ΣPGE=127×10^–9) and lower than that of Co-rich crusts in the Marcus-Wake Seamount (ΣPGE=653×10^–9),similar to that of Co-rich crusts in the South China Sea(ΣPGE=252×10^~–9).The CI chondrite-normalized PGEs patterns in different regions of polymetallic nodules and cobalt-rich crusts are highly consistent,with all being characterized by positive Pt and negative Pd anomalies These results,together with those of previous studies,indicate that PGEs in polymetallic nodules and Co-rich crusts are mainly derived directly from seawater.Pt contents of polymetallic nodules from the study area are negatively correlated with water depth,and Pt/ΣPGE ratios in nodules there are also lower than those of the Corich crusts in the adjacent area,indicating that sedimentary water depth and oxygen fugacity of ambient seawater are the possible important controlling factors for Pt accumulation in crusts and nodules.展开更多
: This paper presents a quantitative analysis of the relations of the occurrence of polymetallic nodules with the geochemical actions of microbes in the seawater, pore water and sediments at the bottom of the eastern ...: This paper presents a quantitative analysis of the relations of the occurrence of polymetallic nodules with the geochemical actions of microbes in the seawater, pore water and sediments at the bottom of the eastern Pacific Ocean basin. Emphasis is laid on the relations of the activity intensity and biochemical transformation rate of aerobic bacteria (iron bacteria, Thiobacillus thioparus, halobacteria and manganese—oxidizing bacteria) and anaerobic bacteria (sulphate—reducing bacteria, denitrifying bacteria, Thiobacillus denitrificans) with mineralization. The experimental research on the migration and accumulation of ore-forming elements caused by microbial and chemical actions shows that the microbes have changed the conditions of oxidation and reduction in the system, and their effect on the element precipitation is much stronger than the chemical actions and accelerates the enrichment of Fe and Ma It demonstrates that the microbes can change the environment to promote the accumulation of ore-forming elements, thus leading to indirect mineralization.展开更多
Manganese minerals in the polymetallic nodules from the Central Pacific Ocean were studied using electron microscopy. The principal Mn minerals, being vernadite and todorokite, exhibit different electron diffraction p...Manganese minerals in the polymetallic nodules from the Central Pacific Ocean were studied using electron microscopy. The principal Mn minerals, being vernadite and todorokite, exhibit different electron diffraction patterns and morphological features. According to its morphological feature, todorokite shows three phases: fibrous, lamellar and lath-shaped. Both vernadite and todorokite are authigenic minerals. While vernadite was mainly precipitated directly from the relevant solution by microbiological oxidation, todorokite was separated from the solution chemically without the help of microbe. Hence, these two minerals show a close genetic relation.展开更多
Geotechnical data obtained from the polymetallic nodules investigation in 1994, in combi nation with the historical data concerned, are analyses comprehensively to study sediment types, geotechnical properties, soil ...Geotechnical data obtained from the polymetallic nodules investigation in 1994, in combi nation with the historical data concerned, are analyses comprehensively to study sediment types, geotechnical properties, soil strength and so on, in order to provide bases for design and construction of engineering facilities and the equipments raquired for the polymetallic nodules mining in the future.展开更多
Non-destructive γ spectrum analyses of 20 polymetallic nodules from the eastern Pacificwere carried out. Numerous nuclides, such as 238U,230Th,226Ra,210Pb,228Ra,228Th,235U,227Ac (or 231 Pa) and 40K were detected. The...Non-destructive γ spectrum analyses of 20 polymetallic nodules from the eastern Pacificwere carried out. Numerous nuclides, such as 238U,230Th,226Ra,210Pb,228Ra,228Th,235U,227Ac (or 231 Pa) and 40K were detected. The count rates of the nuclides in the top or bottom side of nodules facing detector were measured and the ratio R of the count rates of nuclides in the top and the bottom sides was obtained. From counts and ratios, some useful information relating to the growth and movement of the nodules, the source of nuclide and relationship between those and environment can be gotten. A new method for clear distinction between the top and bottom sides of the nodule based on the R value of 226Ra or 210Pb was developed. In addition, one can infer the turnover of nodules according to the R value of 230Th.展开更多
Polymetallic nodules and crusts are two of the most important mineral deposits in the ocean. They are rich in rare earth elements (REEs), iron, manganese, copper, cobalt, nickel, and other useful metals. This paper ...Polymetallic nodules and crusts are two of the most important mineral deposits in the ocean. They are rich in rare earth elements (REEs), iron, manganese, copper, cobalt, nickel, and other useful metals. This paper discussed the analysis of 25 nodule and crust samples collected from the South China Sea, the Pacific, Atlantic, and Indian Oceans. The samples were analyzed for REE content by ICP-MS/AES. The average REE concentration was found to be 1096.96×10^-6 in the nodules and 1623.88×10^-6 in the crusts. Both of these values are much higher than those recorded in Earth's dry-land crust and sedimentary rocks. This REE enrichment is mainly controlled by the absorption of ferromanganese oxides and clay minerals in the nodules and crusts and the high levels of REEs in seawater and sediments. High cerium enrichment in the nodules and crusts may lead to more effective exploitation of REEs in the future.展开更多
The rare earth elements(REE) composition of the polymetallic crusts and nodules obtained from the South China Sea(SCS) were analyzed through inductively coupled plasma mass spectrometry.Results revealed great diff...The rare earth elements(REE) composition of the polymetallic crusts and nodules obtained from the South China Sea(SCS) were analyzed through inductively coupled plasma mass spectrometry.Results revealed great differences in the REE abundances(∑REE) of the SCS polymetallic crusts and nodules; the crusts show the highest ∑REE, whereas the nodules exhibit the lowest ∑REE. The similarity in their NASC-normalized patterns, the enriched light REE(LREE), the markedly positive Ce anomaly(δCe), and the non-or weakly positive Eu anomaly(δEu), suggest that the polymetallic crusts and nodules are of hydrogenetic origin. Moreover, the REE contents and their relevant parameters are quite different among the various layers of the crusts and nodules, which probably results from the different marginal sea environments and mineral assemblages of the samples. The growth profiles of the SCS polymetallic crusts and nodules reveal the tendency ∑REE and δCe to slightly increase from the outer to the inner layers, suggesting that the growth environments of these samples changed smoothly from an oxidizing to a relatively reducing environment; in addition, the crust ST1 may have experienced a regressive event(sea-level change) during its growth, although the REE composition of the seawater remained relatively stable. On the basis of the regional ∑REE distribution in the SCS crusts and nodules,the samples collected near the northern margin were influenced by terrigenous material more strongly compared with the other samples, and the REE contents are relatively low. Therefore, the special geotectonic environment is a significant factor influencing the abundance of elements, including REE and other trace elements. Compared with the oceanic seamount crusts and deep-sea nodules from other oceans,the SCS polymetallic crusts and nodules exhibit special REE compositions and shale-normalized patterns, implying that the samples are of marginal sea-type Fe-Mn sedimentary deposits, which are strongly affected by the epicontinental environment, and that they grew in a more oxidative seawater environment. This analysis indicates that the oxidized seawater environment and the special nano property of their Fe-Mn minerals enrich the REE adsorption.展开更多
Ferromanganese crusts and nodules are important submarine mineral resources that contain various metal elements with significant economic value. In this study, polymetallic crusts and nodules obtained from the South C...Ferromanganese crusts and nodules are important submarine mineral resources that contain various metal elements with significant economic value. In this study, polymetallic crusts and nodules obtained from the South China Sea (SCS) were determined by using X-ray power diffraction (XRD), Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) to systematically investigate and analyze the mineralogical and spectral characteristics of the Fe-Mn minerals. XRD measurements revealed that the SCS polymetallic crusts and nodules were composed of vernadite, quartz, and plagioclase. The nodules also contained todorokite. The Fe-phase minerals of the SCS crusts and nodules were composed of amorphous Fe oxide/hydroxide, and the Mn- and Fe-phases minerals exhibited relatively poor degrees of crystallization. FTIR results showed that the Fe-Mn minerals in the crusts and nodules included a large number of surface hydroxyl groups. These surface hydroxyl groups contained protons that could provide reactive sites for complexation of ore-forming elements in seawater. XPS results indicated that the surfaces of the Fe-Mn minerals mainly contained Fe, Mn, and O. Fe was present in the trivalent oxidation state, while Mn, which may contain several bivalent oxidation state, was present in the tetravalent and trivalent oxidation states. The SCS polymetallic crusts and nodules were compared with Pacific seamount crusts, and results showed that the surface hydroxyl (-OH) groups of the SCS crusts and nodules numbered more than the lattice oxygen (O^2-). But the lattice oxygen of Pacific seamount crusts numbered more than the surface hydroxyl groups. This characteristic indicated that the degree of crystallization of Fe-Mn minerals from the Pacific Ocean was higher than that of minerals from the South China Sea. Comprehensive studies showed that ore-forming elements in the interface between seawater and the Fe-Mn minerals in the submarine ferromanganese crusts and nodules employed the following enrichment mechanisms: (1) the metal ion complexed with the surface hydroxyl of Fe-Mn minerals to form hydroxyl complexes, which were connected by coordination bonds or stable inner-sphere complexes that exchanged protons on the mineral surfaces; (2) the charged surfaces of the minerals and metal cations formed outer-sphere complexes, which made up the electrostatic double layer, through electrostatic adsorption; and (3) the metal cations isomorphously exchanged the Mn and Fe ions of the mineral lattice structure.展开更多
Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the poten...Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the potential solution of using polyaluminum chloride(PAC)in the water jet.The effects of PAC are examined through a self-designed simulation system for deep-sea polymetallic nodule collection and sediment samples from a potential deep-sea mining area.The experimental results showed that the optimal PAC dose was found to be 0.75 g/L.Compared with the test conditions without the addition of PAC,the presence of PAC leads to a reduction in volume,lower characteristic turbidity,smaller diffusion velocity,and shorter settling time of the plume.This indicates that PAC inhibits the entire development process of the plume.The addition of PAC leads to the flocculation of mm-sized particles,resulting in the formation of cm-sized flocs.The flocculation of particles decreases the rate of erosion on the seabed by around 30%.This reduction in erosion helps to decrease the formation of plumes.Additionally,when the size of suspended particles increases,it reduces the scale at which they diffuse.Furthermore,the settling velocity of flocs(around 10^(-2) m/s)is much higher that of compared to sediment particles(around 10^(-5) m/s),which effectively reduces the amount of time the plume remains in suspension.展开更多
Grain size and clay mineral distribution up to 45 cm depth in the silty clay sediments from 26 box cores from 10°to 16°S along four longitudes(73.5°-76.5°E)were studied for understanding spatial ...Grain size and clay mineral distribution up to 45 cm depth in the silty clay sediments from 26 box cores from 10°to 16°S along four longitudes(73.5°-76.5°E)were studied for understanding spatial variability in the Central Indian Basin(CIB).It was observed that the average sand content in the basin is 3.8%,which decreases systematically and longitudinally to 0.3%towards south.The average illite and chlorite major clay mineral abundance also decrease southwards along the four longitudes from 10°S,and show the limit of influence of the Ganges-Brahmaputra river's supply up to 10°S.However, the average clay content increases from west to east in the basin,and southwards along 73.5°E and either side of the 76.5°E fracture zone(FZ),which strongly suggests the possibility of clay supply due to circulation of Antarctic Bottom Water(AABW)from the south through the FZ.The distribution of four clay minerals along 73°and 76.5°E FZ in the CIB shows dissimilar trends of increase and decrease,and indicate a mix environment in the basin.This study indicates that the FZ in the CIB has an important role in controlling the distribution of clay minerals.展开更多
As a part of the fundamental study related to the reduction smelting of spent lithium-ion batteries and ocean polymetallic nodules based on MnO–SiO_(2)slags,this work investigated the activity coefficient of NiO in S...As a part of the fundamental study related to the reduction smelting of spent lithium-ion batteries and ocean polymetallic nodules based on MnO–SiO_(2)slags,this work investigated the activity coefficient of NiO in SiO_(2)-saturated Mn O–Si O_(2)slag and Al_(2)O_(3)-saturated Mn O–SiO_(2)–Al_(2)O_(3)slag at 1623 K with controlled oxygen partial pressure levels of 10^(-7),10^(-6),and 10^(-5)Pa.Results showed that the solubility of nickel oxide in the slags increased with increasing oxygen partial pressure.The nickel in the Mn O–Si O_(2)slag and Mn O–Si O_(2)–Al_(2)O_(3)slag existed as Ni O under experimental conditions.The addition of Al_(2)O_(3)in the Mn O–Si O_(2)slag decreased the dissolution of nickel in the slag and increased the activity coefficient of Ni O.Furthermore,the activity coefficient of Ni O(γN_(i O)),which is solid Ni O,in the Si O_(2)saturated Mn O–Si O_(2)slag and Al_(2)O_(3)saturated Mn O–Si O_(2)–Al_(2)O_(3)slag at 1623 K can be respectively calculated asγN_(i O)=8.58w(Ni O)+3.18 andγN_(i O)=11.06w(Ni O)+4.07,respectively,where w(Ni O)is the Ni O mass fraction in the slag.展开更多
Synthetic Ium manganate has been made in the laboratory at low temperature. The d-spaciug of which shows 1. 002 nm, 0. 501 nm and 0. 34 nm respectively. As the analogue of natural 1nm manganate, it has been used for ...Synthetic Ium manganate has been made in the laboratory at low temperature. The d-spaciug of which shows 1. 002 nm, 0. 501 nm and 0. 34 nm respectively. As the analogue of natural 1nm manganate, it has been used for a serieS of experiments of divalent cations substitution. The results indicate that the 1nm manganate has very strong cation substitution capacity, which probable is the reason of the valuable metal such as Cu, Ni and Co enriched in the manganese nodules. The preference of canons substituting into S 1nm manganate is Cu>Co>Zn≥Ni>Ca>Mg. In the manganese nodules, the content of Ni is usually higher than that of Cu and Co, but in the cation substitution, the latter two are more preference than the former. One can infer from this differentiation that the post-deposition cation substitution is not the sole mechanism by which the valuable metals enter the manganese nodules. It could be the results of combined effects of both original formation and the post-deposition substitution of canons,which leads to the enrichment of valuable metal in the manganese nodules.展开更多
The present status of deep sea bed mining technology for polymetallic nodules has been critically examined in light of its history of development the UNCLoS (the United Nation Convention on the Law of the Sea) regime ...The present status of deep sea bed mining technology for polymetallic nodules has been critically examined in light of its history of development the UNCLoS (the United Nation Convention on the Law of the Sea) regime and the current trends in research.The critical technologies have been highlighted and the need for system integration underscored. The deep sea bed environment and the engineering challenge were presented and the necessary features of the deep sea bed mining system for commercial mining was analyzed. The key accomplishments, problems and future bends in research in the development of the mining system are also discussed. Finally, it points out that the technology gaps can be filled by the bine commercial mining is undertaken as a result of market conditions in its favor.展开更多
In order to explore the mineral resources buried in sea mud,it is necessary to use seabed resistivity measuring equipment,which works closer to the sediments than ordinary ship-based geophysical measuring equipment. B...In order to explore the mineral resources buried in sea mud,it is necessary to use seabed resistivity measuring equipment,which works closer to the sediments than ordinary ship-based geophysical measuring equipment. Because of the harsh environment of seafloor,high pressure and highly conductive seawater,marine magnetotelluric method developed slowly. The sea floor environment is similar to the environment of logging, According to the design of dual lateral logging equipment,a new equipment for seafloor electrical resistivity measurement is designed. Four 3D FEM models that contain resistivity abnormal targets are built to test the ability of this equipment to locate different shape of shallow buried resistivity abnormal targets in sea mud. The authors propose the method to correct the response curve while the bottom surface of this equipment is suspended or not parallel to the seafloor. The resistivity of targets can be calculated accurately.展开更多
A large number of nodule minerals exist in the deep sea.Based on the factors of difficulty in shooting,high economic cost and high accuracy of resource assessment,large-scale planned commercial mining has not yet been...A large number of nodule minerals exist in the deep sea.Based on the factors of difficulty in shooting,high economic cost and high accuracy of resource assessment,large-scale planned commercial mining has not yet been conducted.Only experimental mining has been carried out in areas with high mineral density and obvious benefits after mineral resource assessment.As an efficient method for deep-sea mineral resource assessment,the deep towing system is equipped with a visual system for mineral resource analysis using collected images and videos,which has become a key component of resource assessment.Therefore,high accuracy in deep-sea mineral image segmentation is the primary goal of the segmentation algorithm.In this paper,the existing deep-sea nodule mineral image segmentation algorithms are studied in depth and divided into traditional and deep learning-based segmentation methods,and the advantages and disadvantages of each are compared and summarized.The deep learning methods show great advantages in deep-sea mineral image segmentation,and there is a great improvement in segmentation accuracy and efficiency compared with the traditional methods.Then,the mineral image dataset and segmentation evaluation metrics are listed.Finally,possible future research topics and improvement measures are discussed for the reference of other researchers.展开更多
Computer simulation was used for hydraulic lifting systems. Based on theoryof multiphase flows and their applications on the lifting systems, mathematical models for pumplifting and air lifting were built and simulati...Computer simulation was used for hydraulic lifting systems. Based on theoryof multiphase flows and their applications on the lifting systems, mathematical models for pumplifting and air lifting were built and simulative analysis programs for them were developedrespectively. Corresponding lifting behaviors and system parameters were analyzed and optimum matchof the parameters for future pilot mining tests and commercial mining production was predicted.展开更多
In the northern South China Sea, the accumulation of enormous quantities of terrigenous sediment during Cenozoic rendered well-developed polymetallic nodules very rare. In this study, we analyzed a polymetallic nodule...In the northern South China Sea, the accumulation of enormous quantities of terrigenous sediment during Cenozoic rendered well-developed polymetallic nodules very rare. In this study, we analyzed a polymetallic nodule from the northwestern conti- nental margin of the South China Sea using microscopic mineralogical observation, electron probes, X-ray diffraction (XRD), ICP-MS, and Be isotope dating. We found the nodule's shell layers rich in different types of microstructures, including co- lumnar, laminar, stack-like, petal-like, and porphyritic structures. The major mineral components of the nodule are MnO2. Unlike nodules from the eastern Pacific basin, this nodule has high contents in Fe, Si, A1, and REEs but low contents in Mn, Cu, Co, and Ni. The Mn/Fe ratio is also low and the average REEs content is 1370.4 ppm. There is a strong positive anomaly of Ce; and the Be (beryllium) isotope dating shows the initial time of growth of the nodule to be about 3.29 Ma. The inner compact layer formed from 3.29 Ma to about 1.83 Ma. The laminar and stack-like structures and the low contents of the terri- genous elements such as Fe, Si, REE, and A1 indicate the paleoceanographical environment with weak undersea currents and favorable oxidizing conditions. From 1.83 Ma to 0.73 Ma, the growth rate of the nodule increased by about 3%; the micro- structures formed during this period are stack-like and columnar. The contents of Si and A1 are increased by nearly 10%, indi- cating an increase of terrigenous sediment input in the northern South China Sea. The content of Ce is decreased by about 16% indicating a significant weakening of the oxidizing conditions at the seabed. From 0.73 Ma to 0.69 Ma, the growth rate of the nodule rapidly rose up to 8.27 times that of the nodule's average growth rate, and the contents of Fe, A1, and REEs in the layer also increased, forming a loose layer characterized by oolitic, granular, porphyritic, and petal-like structures, indicating the paleoceanographical environment with a high sedimemtation rate and abundant supply of terrigenous sediment in the northern South China Sea. From 0.69 Ma to 0.22 Ma, the growth rate of the nodule suddenly slowed and the outer compact layer formed. Contents of Fe, Si, REE, A1, Mn, Cu, Co, and Ni in this layer were significantly lower than in other layers. The main structures of the layer are laminar and fissure filling structures. These reflect the paleoceanographical environment with stable undersea currents, poor oxidizing conditions, and other conditions not conducive to nodule growth. The growth process of nodule S04-1DG-1 was found to respond sensitively to the changes of the paleoceanographical environment of the northern South China Sea during the late Cenozoic.展开更多
Deep-sea minerals in polymetallic nodules and seamount Co-rich crusts are not only formed by mineralization but also by biologically driven processes involving microorganisms (biomineralization). Within the polymeta...Deep-sea minerals in polymetallic nodules and seamount Co-rich crusts are not only formed by mineralization but also by biologically driven processes involving microorganisms (biomineralization). Within the polymetallic nodules, free-living and biofilm-forming bacteria provide the matrix for manganese deposition, and in seamount Co-rich crusts, coccolithophores represent the dominant organisms that act as bio-seeds for an initial manganese deposition. These (bio)minerals are economically important: manganese is an important alloying component and cobalt forms part of special steels in addition to being used, along with other rare metals, in plasma screens, hard-disk magnets and hybrid car motors. Recent progress in our understanding of the participation of the organic matrices in the enrichment of these metals might provide the basis for feasibility studies of biotechnological applications.展开更多
基金China Ocean Mineral Resources R&D Association(COMRA)Project under contract Nos DY135-C1-1-05,DY135-N1-1-06 and DY135-C1-1-02the Scientific Research Fund of the Second Institute of Oceanography,MNR under contract No.JT1304。
文摘Polymetallic nodules and cobalt (Co)-rich crusts are enriched in platinum-group elements (PGEs),especially platinum (Pt) and may be important sinks of PGEs.At present,little information is available on PGEs in polymetallic nodules,and their geochemical characteristics and the causes of PGEs enrichment are unclear.Here PGEs of polymetallic nodules from abyssal basin in the Marcus-Wake Seamount area of the Northwest Pacific Ocean are reported and compared with the published PGEs data of polymetallic nodules and Co-rich crusts in the Pacific.The total PGEs (ΣPGE) content of polymetallic nodules in study area is 258×10^–9) in average,markedly higher than that of Clarion-Clipperton Zone (CCZ) nodules (ΣPGE=127×10^–9) and lower than that of Co-rich crusts in the Marcus-Wake Seamount (ΣPGE=653×10^–9),similar to that of Co-rich crusts in the South China Sea(ΣPGE=252×10^~–9).The CI chondrite-normalized PGEs patterns in different regions of polymetallic nodules and cobalt-rich crusts are highly consistent,with all being characterized by positive Pt and negative Pd anomalies These results,together with those of previous studies,indicate that PGEs in polymetallic nodules and Co-rich crusts are mainly derived directly from seawater.Pt contents of polymetallic nodules from the study area are negatively correlated with water depth,and Pt/ΣPGE ratios in nodules there are also lower than those of the Corich crusts in the adjacent area,indicating that sedimentary water depth and oxygen fugacity of ambient seawater are the possible important controlling factors for Pt accumulation in crusts and nodules.
基金This paper is based on the results of project No. 49472111 of the National Natural Science Foundation of China and a major project of science and technology of the "Eighth Five-Year Plan" (1991-1995) as well as marine investigations of cruises DY85-1 and DY85-3.
文摘: This paper presents a quantitative analysis of the relations of the occurrence of polymetallic nodules with the geochemical actions of microbes in the seawater, pore water and sediments at the bottom of the eastern Pacific Ocean basin. Emphasis is laid on the relations of the activity intensity and biochemical transformation rate of aerobic bacteria (iron bacteria, Thiobacillus thioparus, halobacteria and manganese—oxidizing bacteria) and anaerobic bacteria (sulphate—reducing bacteria, denitrifying bacteria, Thiobacillus denitrificans) with mineralization. The experimental research on the migration and accumulation of ore-forming elements caused by microbial and chemical actions shows that the microbes have changed the conditions of oxidation and reduction in the system, and their effect on the element precipitation is much stronger than the chemical actions and accelerates the enrichment of Fe and Ma It demonstrates that the microbes can change the environment to promote the accumulation of ore-forming elements, thus leading to indirect mineralization.
文摘Manganese minerals in the polymetallic nodules from the Central Pacific Ocean were studied using electron microscopy. The principal Mn minerals, being vernadite and todorokite, exhibit different electron diffraction patterns and morphological features. According to its morphological feature, todorokite shows three phases: fibrous, lamellar and lath-shaped. Both vernadite and todorokite are authigenic minerals. While vernadite was mainly precipitated directly from the relevant solution by microbiological oxidation, todorokite was separated from the solution chemically without the help of microbe. Hence, these two minerals show a close genetic relation.
文摘Geotechnical data obtained from the polymetallic nodules investigation in 1994, in combi nation with the historical data concerned, are analyses comprehensively to study sediment types, geotechnical properties, soil strength and so on, in order to provide bases for design and construction of engineering facilities and the equipments raquired for the polymetallic nodules mining in the future.
基金This study was supported by the National Scientific Technological Project of China in the "Ninth-Five Year Plan" under contract No. DY95 - 02 - 15.
文摘Non-destructive γ spectrum analyses of 20 polymetallic nodules from the eastern Pacificwere carried out. Numerous nuclides, such as 238U,230Th,226Ra,210Pb,228Ra,228Th,235U,227Ac (or 231 Pa) and 40K were detected. The count rates of the nuclides in the top or bottom side of nodules facing detector were measured and the ratio R of the count rates of nuclides in the top and the bottom sides was obtained. From counts and ratios, some useful information relating to the growth and movement of the nodules, the source of nuclide and relationship between those and environment can be gotten. A new method for clear distinction between the top and bottom sides of the nodule based on the R value of 226Ra or 210Pb was developed. In addition, one can infer the turnover of nodules according to the R value of 230Th.
基金National Natural Science Foundation of China(40972079,41172015 and 41030853)the State Key Research Develop-ment Program of China(2007CB411703)+1 种基金the Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology,Ministry of Landand Resources(MRE200912)the Fund of Education Department of Hebei Province(2009443,2010148)
文摘Polymetallic nodules and crusts are two of the most important mineral deposits in the ocean. They are rich in rare earth elements (REEs), iron, manganese, copper, cobalt, nickel, and other useful metals. This paper discussed the analysis of 25 nodule and crust samples collected from the South China Sea, the Pacific, Atlantic, and Indian Oceans. The samples were analyzed for REE content by ICP-MS/AES. The average REE concentration was found to be 1096.96×10^-6 in the nodules and 1623.88×10^-6 in the crusts. Both of these values are much higher than those recorded in Earth's dry-land crust and sedimentary rocks. This REE enrichment is mainly controlled by the absorption of ferromanganese oxides and clay minerals in the nodules and crusts and the high levels of REEs in seawater and sediments. High cerium enrichment in the nodules and crusts may lead to more effective exploitation of REEs in the future.
基金financially supported by the National12th Five Year Plan Project(No.DY-125-13-R-05)Natural Sciences Foundation of China(No.40343019.40473024)+2 种基金project from the State Key Laboratory for Mineral Deposits Research in Nanjing University(No.20-15-07)the Project Supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2011)the Fundamental Research Funds for Central Universities(No.121gjc05,091gpy09)
文摘The rare earth elements(REE) composition of the polymetallic crusts and nodules obtained from the South China Sea(SCS) were analyzed through inductively coupled plasma mass spectrometry.Results revealed great differences in the REE abundances(∑REE) of the SCS polymetallic crusts and nodules; the crusts show the highest ∑REE, whereas the nodules exhibit the lowest ∑REE. The similarity in their NASC-normalized patterns, the enriched light REE(LREE), the markedly positive Ce anomaly(δCe), and the non-or weakly positive Eu anomaly(δEu), suggest that the polymetallic crusts and nodules are of hydrogenetic origin. Moreover, the REE contents and their relevant parameters are quite different among the various layers of the crusts and nodules, which probably results from the different marginal sea environments and mineral assemblages of the samples. The growth profiles of the SCS polymetallic crusts and nodules reveal the tendency ∑REE and δCe to slightly increase from the outer to the inner layers, suggesting that the growth environments of these samples changed smoothly from an oxidizing to a relatively reducing environment; in addition, the crust ST1 may have experienced a regressive event(sea-level change) during its growth, although the REE composition of the seawater remained relatively stable. On the basis of the regional ∑REE distribution in the SCS crusts and nodules,the samples collected near the northern margin were influenced by terrigenous material more strongly compared with the other samples, and the REE contents are relatively low. Therefore, the special geotectonic environment is a significant factor influencing the abundance of elements, including REE and other trace elements. Compared with the oceanic seamount crusts and deep-sea nodules from other oceans,the SCS polymetallic crusts and nodules exhibit special REE compositions and shale-normalized patterns, implying that the samples are of marginal sea-type Fe-Mn sedimentary deposits, which are strongly affected by the epicontinental environment, and that they grew in a more oxidative seawater environment. This analysis indicates that the oxidized seawater environment and the special nano property of their Fe-Mn minerals enrich the REE adsorption.
基金The National Natural Science Foundation of China under contract Nos 40473024 and 40343019the research fund from State Key Laboratory for Mineral Deposits Research in Nanjing University under contract No.20-15-07+3 种基金the Investigation and Development of Marine Resources during the 12th Five Year Plan Project under contract No.DY125-13-R-05the Doctoral Program of Higher Education Research Fund under contract Nos 20040558049 and 20120171130005the Project of High Level Talents in Colleges of Guangdong Province(2011)the Fundamental Research Funds for Central Universities under contract Nos 16lgjc11,12lgjc05 and 09lgpy09
文摘Ferromanganese crusts and nodules are important submarine mineral resources that contain various metal elements with significant economic value. In this study, polymetallic crusts and nodules obtained from the South China Sea (SCS) were determined by using X-ray power diffraction (XRD), Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) to systematically investigate and analyze the mineralogical and spectral characteristics of the Fe-Mn minerals. XRD measurements revealed that the SCS polymetallic crusts and nodules were composed of vernadite, quartz, and plagioclase. The nodules also contained todorokite. The Fe-phase minerals of the SCS crusts and nodules were composed of amorphous Fe oxide/hydroxide, and the Mn- and Fe-phases minerals exhibited relatively poor degrees of crystallization. FTIR results showed that the Fe-Mn minerals in the crusts and nodules included a large number of surface hydroxyl groups. These surface hydroxyl groups contained protons that could provide reactive sites for complexation of ore-forming elements in seawater. XPS results indicated that the surfaces of the Fe-Mn minerals mainly contained Fe, Mn, and O. Fe was present in the trivalent oxidation state, while Mn, which may contain several bivalent oxidation state, was present in the tetravalent and trivalent oxidation states. The SCS polymetallic crusts and nodules were compared with Pacific seamount crusts, and results showed that the surface hydroxyl (-OH) groups of the SCS crusts and nodules numbered more than the lattice oxygen (O^2-). But the lattice oxygen of Pacific seamount crusts numbered more than the surface hydroxyl groups. This characteristic indicated that the degree of crystallization of Fe-Mn minerals from the Pacific Ocean was higher than that of minerals from the South China Sea. Comprehensive studies showed that ore-forming elements in the interface between seawater and the Fe-Mn minerals in the submarine ferromanganese crusts and nodules employed the following enrichment mechanisms: (1) the metal ion complexed with the surface hydroxyl of Fe-Mn minerals to form hydroxyl complexes, which were connected by coordination bonds or stable inner-sphere complexes that exchanged protons on the mineral surfaces; (2) the charged surfaces of the minerals and metal cations formed outer-sphere complexes, which made up the electrostatic double layer, through electrostatic adsorption; and (3) the metal cations isomorphously exchanged the Mn and Fe ions of the mineral lattice structure.
基金supported by the National Natural Science Foundation of China(Nos.52225107,U2106224,U1906234,51822904,and U1706223)the Fundamental Research Funds for the Central Universities(No.202041004)
文摘Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the potential solution of using polyaluminum chloride(PAC)in the water jet.The effects of PAC are examined through a self-designed simulation system for deep-sea polymetallic nodule collection and sediment samples from a potential deep-sea mining area.The experimental results showed that the optimal PAC dose was found to be 0.75 g/L.Compared with the test conditions without the addition of PAC,the presence of PAC leads to a reduction in volume,lower characteristic turbidity,smaller diffusion velocity,and shorter settling time of the plume.This indicates that PAC inhibits the entire development process of the plume.The addition of PAC leads to the flocculation of mm-sized particles,resulting in the formation of cm-sized flocs.The flocculation of particles decreases the rate of erosion on the seabed by around 30%.This reduction in erosion helps to decrease the formation of plumes.Additionally,when the size of suspended particles increases,it reduces the scale at which they diffuse.Furthermore,the settling velocity of flocs(around 10^(-2) m/s)is much higher that of compared to sediment particles(around 10^(-5) m/s),which effectively reduces the amount of time the plume remains in suspension.
基金Financial support provided by the D.O.D.and MoES, New Delhi,under the project,'Environmental Impact Assessment studies of nodule mining'
文摘Grain size and clay mineral distribution up to 45 cm depth in the silty clay sediments from 26 box cores from 10°to 16°S along four longitudes(73.5°-76.5°E)were studied for understanding spatial variability in the Central Indian Basin(CIB).It was observed that the average sand content in the basin is 3.8%,which decreases systematically and longitudinally to 0.3%towards south.The average illite and chlorite major clay mineral abundance also decrease southwards along the four longitudes from 10°S,and show the limit of influence of the Ganges-Brahmaputra river's supply up to 10°S.However, the average clay content increases from west to east in the basin,and southwards along 73.5°E and either side of the 76.5°E fracture zone(FZ),which strongly suggests the possibility of clay supply due to circulation of Antarctic Bottom Water(AABW)from the south through the FZ.The distribution of four clay minerals along 73°and 76.5°E FZ in the CIB shows dissimilar trends of increase and decrease,and indicate a mix environment in the basin.This study indicates that the FZ in the CIB has an important role in controlling the distribution of clay minerals.
基金financially supported by the National Natural Science Foundation of China(No.51704038)。
文摘As a part of the fundamental study related to the reduction smelting of spent lithium-ion batteries and ocean polymetallic nodules based on MnO–SiO_(2)slags,this work investigated the activity coefficient of NiO in SiO_(2)-saturated Mn O–Si O_(2)slag and Al_(2)O_(3)-saturated Mn O–SiO_(2)–Al_(2)O_(3)slag at 1623 K with controlled oxygen partial pressure levels of 10^(-7),10^(-6),and 10^(-5)Pa.Results showed that the solubility of nickel oxide in the slags increased with increasing oxygen partial pressure.The nickel in the Mn O–Si O_(2)slag and Mn O–Si O_(2)–Al_(2)O_(3)slag existed as Ni O under experimental conditions.The addition of Al_(2)O_(3)in the Mn O–Si O_(2)slag decreased the dissolution of nickel in the slag and increased the activity coefficient of Ni O.Furthermore,the activity coefficient of Ni O(γN_(i O)),which is solid Ni O,in the Si O_(2)saturated Mn O–Si O_(2)slag and Al_(2)O_(3)saturated Mn O–Si O_(2)–Al_(2)O_(3)slag at 1623 K can be respectively calculated asγN_(i O)=8.58w(Ni O)+3.18 andγN_(i O)=11.06w(Ni O)+4.07,respectively,where w(Ni O)is the Ni O mass fraction in the slag.
文摘Synthetic Ium manganate has been made in the laboratory at low temperature. The d-spaciug of which shows 1. 002 nm, 0. 501 nm and 0. 34 nm respectively. As the analogue of natural 1nm manganate, it has been used for a serieS of experiments of divalent cations substitution. The results indicate that the 1nm manganate has very strong cation substitution capacity, which probable is the reason of the valuable metal such as Cu, Ni and Co enriched in the manganese nodules. The preference of canons substituting into S 1nm manganate is Cu>Co>Zn≥Ni>Ca>Mg. In the manganese nodules, the content of Ni is usually higher than that of Cu and Co, but in the cation substitution, the latter two are more preference than the former. One can infer from this differentiation that the post-deposition cation substitution is not the sole mechanism by which the valuable metals enter the manganese nodules. It could be the results of combined effects of both original formation and the post-deposition substitution of canons,which leads to the enrichment of valuable metal in the manganese nodules.
文摘The present status of deep sea bed mining technology for polymetallic nodules has been critically examined in light of its history of development the UNCLoS (the United Nation Convention on the Law of the Sea) regime and the current trends in research.The critical technologies have been highlighted and the need for system integration underscored. The deep sea bed environment and the engineering challenge were presented and the necessary features of the deep sea bed mining system for commercial mining was analyzed. The key accomplishments, problems and future bends in research in the development of the mining system are also discussed. Finally, it points out that the technology gaps can be filled by the bine commercial mining is undertaken as a result of market conditions in its favor.
文摘In order to explore the mineral resources buried in sea mud,it is necessary to use seabed resistivity measuring equipment,which works closer to the sediments than ordinary ship-based geophysical measuring equipment. Because of the harsh environment of seafloor,high pressure and highly conductive seawater,marine magnetotelluric method developed slowly. The sea floor environment is similar to the environment of logging, According to the design of dual lateral logging equipment,a new equipment for seafloor electrical resistivity measurement is designed. Four 3D FEM models that contain resistivity abnormal targets are built to test the ability of this equipment to locate different shape of shallow buried resistivity abnormal targets in sea mud. The authors propose the method to correct the response curve while the bottom surface of this equipment is suspended or not parallel to the seafloor. The resistivity of targets can be calculated accurately.
基金This work was supported in part by the National Science Foundation Project of P.R.China under Grant No.52071349,No.U1906234partially supported by the Open Project Program of Key Laboratory ofMarine Environmental Survey Technology and Application,Ministry of Natural Resource MESTA-2020-B001+1 种基金Young and Middle-aged Talents Project of the State Ethnic Affairs Commission,the Crossdisciplinary Research Project of Minzu University of China(2020MDJC08)the Graduate Research and Practice Projects of Minzu University of China(SZKY2021039).
文摘A large number of nodule minerals exist in the deep sea.Based on the factors of difficulty in shooting,high economic cost and high accuracy of resource assessment,large-scale planned commercial mining has not yet been conducted.Only experimental mining has been carried out in areas with high mineral density and obvious benefits after mineral resource assessment.As an efficient method for deep-sea mineral resource assessment,the deep towing system is equipped with a visual system for mineral resource analysis using collected images and videos,which has become a key component of resource assessment.Therefore,high accuracy in deep-sea mineral image segmentation is the primary goal of the segmentation algorithm.In this paper,the existing deep-sea nodule mineral image segmentation algorithms are studied in depth and divided into traditional and deep learning-based segmentation methods,and the advantages and disadvantages of each are compared and summarized.The deep learning methods show great advantages in deep-sea mineral image segmentation,and there is a great improvement in segmentation accuracy and efficiency compared with the traditional methods.Then,the mineral image dataset and segmentation evaluation metrics are listed.Finally,possible future research topics and improvement measures are discussed for the reference of other researchers.
文摘Computer simulation was used for hydraulic lifting systems. Based on theoryof multiphase flows and their applications on the lifting systems, mathematical models for pumplifting and air lifting were built and simulative analysis programs for them were developedrespectively. Corresponding lifting behaviors and system parameters were analyzed and optimum matchof the parameters for future pilot mining tests and commercial mining production was predicted.
基金supported by National Natural Science Foundation of China(Grant Nos.40972079,41172015 and 41030853)National Basic Research Program of China(Grant No.2007CB411703)Education Department of Hebei Province(Grant Nos.2009443,2010248)
文摘In the northern South China Sea, the accumulation of enormous quantities of terrigenous sediment during Cenozoic rendered well-developed polymetallic nodules very rare. In this study, we analyzed a polymetallic nodule from the northwestern conti- nental margin of the South China Sea using microscopic mineralogical observation, electron probes, X-ray diffraction (XRD), ICP-MS, and Be isotope dating. We found the nodule's shell layers rich in different types of microstructures, including co- lumnar, laminar, stack-like, petal-like, and porphyritic structures. The major mineral components of the nodule are MnO2. Unlike nodules from the eastern Pacific basin, this nodule has high contents in Fe, Si, A1, and REEs but low contents in Mn, Cu, Co, and Ni. The Mn/Fe ratio is also low and the average REEs content is 1370.4 ppm. There is a strong positive anomaly of Ce; and the Be (beryllium) isotope dating shows the initial time of growth of the nodule to be about 3.29 Ma. The inner compact layer formed from 3.29 Ma to about 1.83 Ma. The laminar and stack-like structures and the low contents of the terri- genous elements such as Fe, Si, REE, and A1 indicate the paleoceanographical environment with weak undersea currents and favorable oxidizing conditions. From 1.83 Ma to 0.73 Ma, the growth rate of the nodule increased by about 3%; the micro- structures formed during this period are stack-like and columnar. The contents of Si and A1 are increased by nearly 10%, indi- cating an increase of terrigenous sediment input in the northern South China Sea. The content of Ce is decreased by about 16% indicating a significant weakening of the oxidizing conditions at the seabed. From 0.73 Ma to 0.69 Ma, the growth rate of the nodule rapidly rose up to 8.27 times that of the nodule's average growth rate, and the contents of Fe, A1, and REEs in the layer also increased, forming a loose layer characterized by oolitic, granular, porphyritic, and petal-like structures, indicating the paleoceanographical environment with a high sedimemtation rate and abundant supply of terrigenous sediment in the northern South China Sea. From 0.69 Ma to 0.22 Ma, the growth rate of the nodule suddenly slowed and the outer compact layer formed. Contents of Fe, Si, REE, A1, Mn, Cu, Co, and Ni in this layer were significantly lower than in other layers. The main structures of the layer are laminar and fissure filling structures. These reflect the paleoceanographical environment with stable undersea currents, poor oxidizing conditions, and other conditions not conducive to nodule growth. The growth process of nodule S04-1DG-1 was found to respond sensitively to the changes of the paleoceanographical environment of the northern South China Sea during the late Cenozoic.
文摘Deep-sea minerals in polymetallic nodules and seamount Co-rich crusts are not only formed by mineralization but also by biologically driven processes involving microorganisms (biomineralization). Within the polymetallic nodules, free-living and biofilm-forming bacteria provide the matrix for manganese deposition, and in seamount Co-rich crusts, coccolithophores represent the dominant organisms that act as bio-seeds for an initial manganese deposition. These (bio)minerals are economically important: manganese is an important alloying component and cobalt forms part of special steels in addition to being used, along with other rare metals, in plasma screens, hard-disk magnets and hybrid car motors. Recent progress in our understanding of the participation of the organic matrices in the enrichment of these metals might provide the basis for feasibility studies of biotechnological applications.