Consider the polynomial differential system of degree m of the form x=-y(1+μ(a_(2)x-a_(1)y))+x(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),y=x(1+μ(a_(2)x-a_(1)y))+y(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),whereμandνare real numbers s...Consider the polynomial differential system of degree m of the form x=-y(1+μ(a_(2)x-a_(1)y))+x(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),y=x(1+μ(a_(2)x-a_(1)y))+y(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),whereμandνare real numbers such that(μ^(2)+v^(2))(μ+v(m-2))(a_(1)^(2)+a_(2)^(2))≠m>2 andΩ_(m−1)(x,y)is a homogenous polynomial of degree m−1.A conjecture,stated in J.Differential Equations 2019,suggests that whenν=1,this differential system has a weak center at the origin if and only if after a convenient linear change of variable(x,y)→(X,Y)the system is invariant under the transformation(X,Y,t)→(−X,Y,−t).For every degree m we prove the extension of this conjecture to any value ofνexcept for a finite set of values ofμ.展开更多
Most studies of the time-reversibility are limited to a linear or an affine involution.In this paper,the authors consider the case of a quadratic involution.For a polynomial differential system with a linear part in t...Most studies of the time-reversibility are limited to a linear or an affine involution.In this paper,the authors consider the case of a quadratic involution.For a polynomial differential system with a linear part in the standard form(-y,x)in R~2,by using the method of regular chains in a computer algebraic system,the computational procedure for finding the necessary and sufficient conditions of the system to be time-reversible with respect to a quadratic involution is given.When the system is quadratic,the necessary and sufficient conditions can be completely obtained by this procedure.For some cubic systems,the necessary and sufficient conditions for these systems to be time-reversible with respect to a quadratic involution are also obtained.These conditions can guarantee the corresponding systems to have a center.Meanwhile,a property of a center-focus system is discovered that if the system is time-reversible with respect to a quadratic involution,then its phase diagram is symmetric about a parabola.展开更多
In this paper we show the distribution of critical points at infinity of n- dimensional polynomial differential systems, and give the conditions, under which the system is degenerate at infinity. Also, we discuss the...In this paper we show the distribution of critical points at infinity of n- dimensional polynomial differential systems, and give the conditions, under which the system is degenerate at infinity. Also, we discuss the quadratic systems with degenerate infinity, and obtain some similar properties to 2-dimensional quadratic systems.展开更多
Suppose that function f(z) is transcendental and meromorphic in the plane. The aim of this work is to investigate the conditions in which differential monomials f(z)f(k)(z) takes any non-zero finite complex nu...Suppose that function f(z) is transcendental and meromorphic in the plane. The aim of this work is to investigate the conditions in which differential monomials f(z)f(k)(z) takes any non-zero finite complex number infinitely times and to consider the normality relation to differential monomials f(z)f(k) (z).展开更多
In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermit...In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermite matrix polynomials,the orthogonality property and a Rodrigues' formula are given.展开更多
Let f(z) be a transcendental meromorphic function in the complex plane and a ≠0 be a constant, for any positive integer m, n, k, satisfy m ≥ nk+n+2, ψ= f^m +a(f^(κ))^n has infinitely many zeros. The corre...Let f(z) be a transcendental meromorphic function in the complex plane and a ≠0 be a constant, for any positive integer m, n, k, satisfy m ≥ nk+n+2, ψ= f^m +a(f^(κ))^n has infinitely many zeros. The corresponding normal criterion also is proved.展开更多
Let f(z) be a meromorphic function and ψ be the differential polynomial of f which satisfies the condition of -↑N(r, f)+-↑N (r, 1/f) = S(r, f). We obtain several results about the zero point of the ψ and ...Let f(z) be a meromorphic function and ψ be the differential polynomial of f which satisfies the condition of -↑N(r, f)+-↑N (r, 1/f) = S(r, f). We obtain several results about the zero point of the ψ and those results extend and improve the results of Yang and Yi in this paper.展开更多
In this paper, by using the idea of truncated counting functions of meromorphic functions, we deal with the problem of uniqueness of the meromorphic functions whose certain nonlinear differential polynomials share one...In this paper, by using the idea of truncated counting functions of meromorphic functions, we deal with the problem of uniqueness of the meromorphic functions whose certain nonlinear differential polynomials share one finite nonzero value.展开更多
This paper deals with a class of <em>n</em>-degree polynomial differential equations. By the fixed point theorem and mathematical analysis techniques, the existence of one (<em>n</em> is an odd...This paper deals with a class of <em>n</em>-degree polynomial differential equations. By the fixed point theorem and mathematical analysis techniques, the existence of one (<em>n</em> is an odd number) or two (<em>n</em> is an even number) periodic solutions of the equation is obtained. These conclusions have certain application value for judging the existence of periodic solutions of polynomial differential equations with only one higher-order term.展开更多
The value distribution of differential polynomials is studied. The results in this paper improve and generalize some previous theorems given by Yang Chungchun (On deficiencies of differential polynomials, Math. Z., ...The value distribution of differential polynomials is studied. The results in this paper improve and generalize some previous theorems given by Yang Chungchun (On deficiencies of differential polynomials, Math. Z., 116(1970), 197- 204), H. S. Gopalakrishna and S. S. Bhoosnurmath (On distribution of values of differential polynomials, Indian 3. Pure Appl. Math., 17(1986), 367-372), I. Lahiri (A note on distribution of nonhomogeneous differential polynomials, Hokkaido Math. J., 31(2002), 453-458) and Yi Hongxun (On zeros of differential polynomials, Adv. in Math., 18(1989), 335-351) et al. Examples show that the results in this paper are sharu.展开更多
In this paper, we investigate uniqueness problems of differential polynomials of meromorphic functions. Let a, b be non-zero constants and let n, k be positive integers satisfying n ≥ 3k + 12. If f^n+ af^(k)and ...In this paper, we investigate uniqueness problems of differential polynomials of meromorphic functions. Let a, b be non-zero constants and let n, k be positive integers satisfying n ≥ 3k + 12. If f^n+ af^(k)and g^n+ ag^(k)share b CM and the b-points of f^n+ af^(k)are not the zeros of f and g, then f and g are either equal or closely related.展开更多
Value distributions of the general differential monomials is discussed.The following theorem is obtained:Let f be a transcendental meromorphic function in the plane,F=f n 0 (f (i) ) n i …(f (k) ) ...Value distributions of the general differential monomials is discussed.The following theorem is obtained:Let f be a transcendental meromorphic function in the plane,F=f n 0 (f (i) ) n i …(f (k) ) n k -c,n i≥1,c≠0 be a constant then (n 0-2)T(r,f)≤(r,1F)+S(r,f) when n 0】2;T(r,f)≤7(i+1)i( i) (r,1f)+(r,1F))+S(r,f) when n 0=1;T(r,f)≤7(N(r,1f)+(r,1F))+S(r,f) when n 0=0.展开更多
This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of...This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).展开更多
Let ξn-1<ξn-2 <ξn-2 <… < ξ1 be the zeros of the the (n -1)-th Legendre polynomial Pn-1(x) and - 1 = xn < xn-1 <… < x1 = 1 the zeros of the polynomial W n(x) =- n(n - 1) Pn-1(t)dt = (1 -x2)P&...Let ξn-1<ξn-2 <ξn-2 <… < ξ1 be the zeros of the the (n -1)-th Legendre polynomial Pn-1(x) and - 1 = xn < xn-1 <… < x1 = 1 the zeros of the polynomial W n(x) =- n(n - 1) Pn-1(t)dt = (1 -x2)P'n-1(x). By the theory of the inverse Pal-Type interpolation, for a function f(x) ∈ C[-1 1], there exists a unique polynomial Rn(x) of degree 2n - 2 (if n is even) satisfying conditions Rn(f,ξk) = f(∈ek)(1≤ k≤ n - 1) ;R'n(f,xk) = f'(xk)(1≤ k≤ n). This paper discusses the simultaneous approximation to a differentiable function f by inverse Pal-Type interpolation polynomial {Rn(f,x)} (n is even) and the main result of this paper is that if f ∈ C'[1,1], r≥2, n≥ + 2> and n is even thenholds uniformly for all x ∈ [- 1,1], where h(x) = 1 +展开更多
In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential pol...In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential polynomial,which extends the related result of Li,and Chen et al..An example is given to show that the hypothesis on the zeros of a(z)is necessary.展开更多
We present an introduction to the Darboux integrability theory of planar complex and real polynomial differential systems containing some improvements to the classical theory.
In this paper, a new triangular decomposition algorithm is proposed for ordinary differential polynomial systems, which has triple exponential computational complexity. The key idea is to eliminate one algebraic varia...In this paper, a new triangular decomposition algorithm is proposed for ordinary differential polynomial systems, which has triple exponential computational complexity. The key idea is to eliminate one algebraic variable from a set of polynomials in one step using the theory of multivariate resultant. This seems to be the first differential triangular decomposition algorithm with elementary computation complexity.展开更多
In this paper, we study the normality of a family of analytic functions and prove the following theorem. Let F be a family of analytic functions in a domain D , k be a positive integer and a(z) , a 1(z) , a 2(z) , ......In this paper, we study the normality of a family of analytic functions and prove the following theorem. Let F be a family of analytic functions in a domain D , k be a positive integer and a(z) , a 1(z) , a 2(z) , ... , a k(z) be analytic in D such that a(z)0 . If f(z)≠0 and the zeros of f (k) (z)+a 1(z)f (k-1) (z)+...+a k(z)f(z)-a(z) are of multiplicity at least 2 for each f∈F , then F is normal in D . This result improves Miranda s norm...展开更多
In this paper, we study one conjecture proposed by W. Bergweiler and showthat any transcendental meromorphic functions f(z) have the form exp(αz + β) if f(z)f″(z) —a(f′(z))~2 7≠ 0, where a ≠ 1, (n±1)/n, n ...In this paper, we study one conjecture proposed by W. Bergweiler and showthat any transcendental meromorphic functions f(z) have the form exp(αz + β) if f(z)f″(z) —a(f′(z))~2 7≠ 0, where a ≠ 1, (n±1)/n, n ∈ N. Moreover, an analogous normality criterion isobtained.展开更多
In 1996, C. C. Yang and P. C. Hu [8] showed that: Let f be a transcendental meromorphic function on the complex plane, and a ≠ 0 be a complex number; then assume that n 〉 2, n1,… , nk are nonnegative integers such...In 1996, C. C. Yang and P. C. Hu [8] showed that: Let f be a transcendental meromorphic function on the complex plane, and a ≠ 0 be a complex number; then assume that n 〉 2, n1,… , nk are nonnegative integers such that n1+… + nk ≥1; thus fn(f′)n1…(f(k))nk-a has infinitely zeros. The aim of this article is to study the value distribution of differential polynomial, which is an extension of the result of Yang and Hu for small function and all zeros of f having multiplicity at least k ≥2. Namely, we prove that fn(f′)n1…(f(k))nk-a(z) has infinitely zeros, where f is a transcendental meromorphic function on the complex plane whose all zeros have multiplicity at least k≥ 2, and a(z) 0 is a small function of f and n ≥ 2, n1,… ,nk are nonnegative integers satisfying n1+ …+ nk ≥1. Using it, we establish some normality criterias for a family of meromorphic functions under a condition where differential polynomials generated by the members of the family share a holomorphic function with zero points. The results of this article are supplement of some problems studied by d. Yunbo and G. Zongsheng [6], and extension of some problems studied X. Wu and Y. Xu [10]. The main result of this article also leads to a counterexample to the converse of Bloeh's principle.展开更多
基金Supported by Grant NNSF of China(Grant No.12171491)the Ministerio de Ciencia,Innovación y Universidades,Agencia Estatal de Investigación grants MTM2016-77278-P(FEDER)and PID2019-104658GB-I00(FEDER)+1 种基金the Agència de Gestiód’Ajuts Universitaris i de Recerca grant 2017SGR1617the H2020 European Research Council grant MSCA-RISE-2017-777911。
文摘Consider the polynomial differential system of degree m of the form x=-y(1+μ(a_(2)x-a_(1)y))+x(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),y=x(1+μ(a_(2)x-a_(1)y))+y(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),whereμandνare real numbers such that(μ^(2)+v^(2))(μ+v(m-2))(a_(1)^(2)+a_(2)^(2))≠m>2 andΩ_(m−1)(x,y)is a homogenous polynomial of degree m−1.A conjecture,stated in J.Differential Equations 2019,suggests that whenν=1,this differential system has a weak center at the origin if and only if after a convenient linear change of variable(x,y)→(X,Y)the system is invariant under the transformation(X,Y,t)→(−X,Y,−t).For every degree m we prove the extension of this conjecture to any value ofνexcept for a finite set of values ofμ.
基金partially supported by the Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP,China)under Grant No.20115134110001。
文摘Most studies of the time-reversibility are limited to a linear or an affine involution.In this paper,the authors consider the case of a quadratic involution.For a polynomial differential system with a linear part in the standard form(-y,x)in R~2,by using the method of regular chains in a computer algebraic system,the computational procedure for finding the necessary and sufficient conditions of the system to be time-reversible with respect to a quadratic involution is given.When the system is quadratic,the necessary and sufficient conditions can be completely obtained by this procedure.For some cubic systems,the necessary and sufficient conditions for these systems to be time-reversible with respect to a quadratic involution are also obtained.These conditions can guarantee the corresponding systems to have a center.Meanwhile,a property of a center-focus system is discovered that if the system is time-reversible with respect to a quadratic involution,then its phase diagram is symmetric about a parabola.
文摘In this paper we show the distribution of critical points at infinity of n- dimensional polynomial differential systems, and give the conditions, under which the system is degenerate at infinity. Also, we discuss the quadratic systems with degenerate infinity, and obtain some similar properties to 2-dimensional quadratic systems.
基金Foundation item: Supported by the National Natural Science Foundation of Education Department of Sichuan Province(2002A031) Supported by the "11.5" Research and Study Programs of SWUST(06zx2116) Supported by the National Natural Science Foundation of China(10271122)
文摘Suppose that function f(z) is transcendental and meromorphic in the plane. The aim of this work is to investigate the conditions in which differential monomials f(z)f(k)(z) takes any non-zero finite complex number infinitely times and to consider the normality relation to differential monomials f(z)f(k) (z).
文摘In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermite matrix polynomials,the orthogonality property and a Rodrigues' formula are given.
基金Supported by the NSF of China(10771121)Supported by the "Yumiao" Project of Guangdong Province(LYM08097)
文摘Let f(z) be a transcendental meromorphic function in the complex plane and a ≠0 be a constant, for any positive integer m, n, k, satisfy m ≥ nk+n+2, ψ= f^m +a(f^(κ))^n has infinitely many zeros. The corresponding normal criterion also is proved.
基金Supported by the Natural Science Fundation of Henan Proivince(0211050200)
文摘Let f(z) be a meromorphic function and ψ be the differential polynomial of f which satisfies the condition of -↑N(r, f)+-↑N (r, 1/f) = S(r, f). We obtain several results about the zero point of the ψ and those results extend and improve the results of Yang and Yi in this paper.
基金The NSF(11301076)of Chinathe NSF(2014J01004)of Fujian Province
文摘In this paper, by using the idea of truncated counting functions of meromorphic functions, we deal with the problem of uniqueness of the meromorphic functions whose certain nonlinear differential polynomials share one finite nonzero value.
文摘This paper deals with a class of <em>n</em>-degree polynomial differential equations. By the fixed point theorem and mathematical analysis techniques, the existence of one (<em>n</em> is an odd number) or two (<em>n</em> is an even number) periodic solutions of the equation is obtained. These conclusions have certain application value for judging the existence of periodic solutions of polynomial differential equations with only one higher-order term.
文摘The value distribution of differential polynomials is studied. The results in this paper improve and generalize some previous theorems given by Yang Chungchun (On deficiencies of differential polynomials, Math. Z., 116(1970), 197- 204), H. S. Gopalakrishna and S. S. Bhoosnurmath (On distribution of values of differential polynomials, Indian 3. Pure Appl. Math., 17(1986), 367-372), I. Lahiri (A note on distribution of nonhomogeneous differential polynomials, Hokkaido Math. J., 31(2002), 453-458) and Yi Hongxun (On zeros of differential polynomials, Adv. in Math., 18(1989), 335-351) et al. Examples show that the results in this paper are sharu.
基金supported by the NNSF(11201014,11171013,11126036,11371225)the YWF-14-SXXY-008,YWF-ZY-302854 of Beihang Universitysupported by the youth talent program of Beijing(29201443)
文摘In this paper, we investigate uniqueness problems of differential polynomials of meromorphic functions. Let a, b be non-zero constants and let n, k be positive integers satisfying n ≥ 3k + 12. If f^n+ af^(k)and g^n+ ag^(k)share b CM and the b-points of f^n+ af^(k)are not the zeros of f and g, then f and g are either equal or closely related.
文摘Value distributions of the general differential monomials is discussed.The following theorem is obtained:Let f be a transcendental meromorphic function in the plane,F=f n 0 (f (i) ) n i …(f (k) ) n k -c,n i≥1,c≠0 be a constant then (n 0-2)T(r,f)≤(r,1F)+S(r,f) when n 0】2;T(r,f)≤7(i+1)i( i) (r,1f)+(r,1F))+S(r,f) when n 0=1;T(r,f)≤7(N(r,1f)+(r,1F))+S(r,f) when n 0=0.
基金The second named author was supported in part by an NSERC Postdoctoral Fellowship,Canada and a CR F Grant,University of Alberta
文摘This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).
文摘Let ξn-1<ξn-2 <ξn-2 <… < ξ1 be the zeros of the the (n -1)-th Legendre polynomial Pn-1(x) and - 1 = xn < xn-1 <… < x1 = 1 the zeros of the polynomial W n(x) =- n(n - 1) Pn-1(t)dt = (1 -x2)P'n-1(x). By the theory of the inverse Pal-Type interpolation, for a function f(x) ∈ C[-1 1], there exists a unique polynomial Rn(x) of degree 2n - 2 (if n is even) satisfying conditions Rn(f,ξk) = f(∈ek)(1≤ k≤ n - 1) ;R'n(f,xk) = f'(xk)(1≤ k≤ n). This paper discusses the simultaneous approximation to a differentiable function f by inverse Pal-Type interpolation polynomial {Rn(f,x)} (n is even) and the main result of this paper is that if f ∈ C'[1,1], r≥2, n≥ + 2> and n is even thenholds uniformly for all x ∈ [- 1,1], where h(x) = 1 +
文摘In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential polynomial,which extends the related result of Li,and Chen et al..An example is given to show that the hypothesis on the zeros of a(z)is necessary.
文摘We present an introduction to the Darboux integrability theory of planar complex and real polynomial differential systems containing some improvements to the classical theory.
基金supported by the National Natural Science Foundation of China under Grant No.60821002the National Key Basic Research Project of China
文摘In this paper, a new triangular decomposition algorithm is proposed for ordinary differential polynomial systems, which has triple exponential computational complexity. The key idea is to eliminate one algebraic variable from a set of polynomials in one step using the theory of multivariate resultant. This seems to be the first differential triangular decomposition algorithm with elementary computation complexity.
文摘In this paper, we study the normality of a family of analytic functions and prove the following theorem. Let F be a family of analytic functions in a domain D , k be a positive integer and a(z) , a 1(z) , a 2(z) , ... , a k(z) be analytic in D such that a(z)0 . If f(z)≠0 and the zeros of f (k) (z)+a 1(z)f (k-1) (z)+...+a k(z)f(z)-a(z) are of multiplicity at least 2 for each f∈F , then F is normal in D . This result improves Miranda s norm...
基金Supported by National Natural Science FoundationScience Technology Promotion Foundation of Fujian Province(2003)
文摘In this paper, we study one conjecture proposed by W. Bergweiler and showthat any transcendental meromorphic functions f(z) have the form exp(αz + β) if f(z)f″(z) —a(f′(z))~2 7≠ 0, where a ≠ 1, (n±1)/n, n ∈ N. Moreover, an analogous normality criterion isobtained.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number 101.04-2014.41the Vietnam Institute for Advanced Study in Mathematics for financial support
文摘In 1996, C. C. Yang and P. C. Hu [8] showed that: Let f be a transcendental meromorphic function on the complex plane, and a ≠ 0 be a complex number; then assume that n 〉 2, n1,… , nk are nonnegative integers such that n1+… + nk ≥1; thus fn(f′)n1…(f(k))nk-a has infinitely zeros. The aim of this article is to study the value distribution of differential polynomial, which is an extension of the result of Yang and Hu for small function and all zeros of f having multiplicity at least k ≥2. Namely, we prove that fn(f′)n1…(f(k))nk-a(z) has infinitely zeros, where f is a transcendental meromorphic function on the complex plane whose all zeros have multiplicity at least k≥ 2, and a(z) 0 is a small function of f and n ≥ 2, n1,… ,nk are nonnegative integers satisfying n1+ …+ nk ≥1. Using it, we establish some normality criterias for a family of meromorphic functions under a condition where differential polynomials generated by the members of the family share a holomorphic function with zero points. The results of this article are supplement of some problems studied by d. Yunbo and G. Zongsheng [6], and extension of some problems studied X. Wu and Y. Xu [10]. The main result of this article also leads to a counterexample to the converse of Bloeh's principle.