期刊文献+
共找到2,692篇文章
< 1 2 135 >
每页显示 20 50 100
An Extended Numerical Method by Stancu Polynomials for Solution of Integro-Differential Equations Arising in Oscillating Magnetic Fields
1
作者 Neşe İşler Acar 《Advances in Pure Mathematics》 2024年第10期785-796,共12页
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b... In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method. 展开更多
关键词 Stancu polynomials Collocation Method Integro-Differential equations Linear Equation Systems Matrix equations
下载PDF
Linear Functional Equations and Twisted Polynomials
2
作者 Moumouni Djassibo Woba 《Journal of Applied Mathematics and Physics》 2024年第4期1459-1471,共13页
A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view... A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms. 展开更多
关键词 Functional equations Twisted polynomials RINGS MORPHISMS Euclidian Division
下载PDF
Nonlinear Algebraic Equations Solved by an Optimal Splitting-Linearizing Iterative Method
3
作者 Chein-Shan Liu Essam REl-Zahar Yung-Wei Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1111-1130,共20页
How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linea... How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM). 展开更多
关键词 Nonlinear algebraic equations novel splitting-linearizing technique iterative method maximal projection optimal splitting parameter
下载PDF
A Collocation Technique via Pell-Lucas Polynomials to Solve Fractional Differential EquationModel for HIV/AIDS with Treatment Compartment
4
作者 Gamze Yıldırım Suayip Yüzbası 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期281-310,共30页
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen... In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct. 展开更多
关键词 Collocation method fractional differential equations HIV/AIDS epidemic model Pell-Lucas polynomials
下载PDF
THE GROWTH OF SOLUTIONS TO HIGHER ORDER DIFFERENTIAL EQUATIONS WITH EXPONENTIAL POLYNOMIALS AS ITS COEFFICIENTS 被引量:1
5
作者 黄志波 罗敏伟 陈宗煊 《Acta Mathematica Scientia》 SCIE CSCD 2023年第1期439-449,共11页
By looking at the situation when the coefficients Pj(z)(j=1,2,…,n-1)(or most of them) are exponential polynomials,we investigate the fact that all nontrivial solutions to higher order differential equations f((n))+Pn... By looking at the situation when the coefficients Pj(z)(j=1,2,…,n-1)(or most of them) are exponential polynomials,we investigate the fact that all nontrivial solutions to higher order differential equations f((n))+Pn-1(z)f((n-1))+…+P0(z)f=0 are of infinite order.An exponential polynomial coefficient plays a key role in these results. 展开更多
关键词 differential equations entire solution exponential polynomial GROWTH
下载PDF
Operator Methods and SU(1,1) Symmetry in the Theory of Jacobi and of Ultraspherical Polynomials
6
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2017年第2期213-261,共49页
Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting proper... Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schr&ouml;dinger equation to P&ouml;schl-Teller potentials. 展开更多
关键词 Orthogonal polynomials Lie Algebra SU(1 1) and Lie Group SU(1 1) Lowering and Raising Operators Jacobi polynomials Ultraspherical polynomials Gegenbauer polynomials Chebyshev polynomials Legendre polynomials Stirling Numbers Hypergeometric Function Operator Identities Vandermond’s Convolution Identity Poschl-Teller Potentials
下载PDF
HERMITE MATRIX POLYNOMIALS AND SECOND ORDER MATRIX DIFFERENTIAL EQUATIONS 被引量:6
7
作者 L.Jódar R.Company 《Analysis in Theory and Applications》 1996年第2期20-30,共11页
In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermit... In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermite matrix polynomials,the orthogonality property and a Rodrigues' formula are given. 展开更多
关键词 exp HERMITE MATRIX polynomials AND SECOND ORDER MATRIX DIFFERENTIAL equations
下载PDF
New Implementation of Legendre Polynomials for Solving Partial Differential Equations 被引量:1
8
作者 Ali Davari Abozar Ahmadi 《Applied Mathematics》 2013年第12期1647-1650,共4页
In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear... In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The performance of presented method has been compared with other methods, namely Sinc-Galerkin, quadratic spline collocation and LiuLin method. Numerical examples show better accuracy of the proposed method. Moreover, the computation cost decreases at least by a factor of 6 in this method. 展开更多
关键词 LEGENDRE polynomials PARTIAL Differential equations COLLOCATION Method
下载PDF
Chebyshev Polynomials for Solving a Class of Singular Integral Equations 被引量:1
9
作者 Samah M. Dardery Mohamed M. Allan 《Applied Mathematics》 2014年第4期753-764,共12页
This paper is devoted to studying the approximate solution of singular integral equations by means of Chebyshev polynomials. Some examples are presented to illustrate the method.
关键词 SINGULAR INTEGRAL equations CAUCHY KERNEL CHEBYSHEV polynomials Weight Functions
下载PDF
Numerical Solutions of Volterra Equations Using Galerkin Method with Certain Orthogonal Polynomials 被引量:1
10
作者 James E. Mamadu Ignatius N. Njoseh 《Journal of Applied Mathematics and Physics》 2016年第2期367-382,共7页
This work is aim at providing a numerical technique for the Volterra integral equations using Galerkin method. For this purpose, an effective matrix formulation is proposed to solve linear Volterra integral equations ... This work is aim at providing a numerical technique for the Volterra integral equations using Galerkin method. For this purpose, an effective matrix formulation is proposed to solve linear Volterra integral equations of the first and second kind respectively using orthogonal polynomials as trial functions which are constructed in the interval [-1,1] with respect to the weight function w(x)=1+x<sup>2</sup>. The efficiency of the proposed method is tested on several numerical examples and compared with the analytic solutions available in the literature. 展开更多
关键词 Galerkin Method Orthogonal polynomials Volterra Integral equations
下载PDF
The Degenerate Form of the Adomian Polynomials in the Power Series Method for Nonlinear Ordinary Differential Equations 被引量:2
11
作者 Jun-Sheng Duan Randolph Rach 《Journal of Mathematics and System Science》 2015年第10期411-428,共18页
In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable non... In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency. 展开更多
关键词 Power series method Adomian decomposition method Adomian polynomials Modified decomposition method Nonlinear differential equation
下载PDF
SOlvaBILITY OF HIGHER INDEX TIME-VARYING LINEAR DIFFERENTIAL-ALGEBRAIC EQUATIONS 被引量:1
12
作者 宋永忠 《Acta Mathematica Scientia》 SCIE CSCD 2001年第1期77-92,共16页
Linear differential-algebraic equations (DAEs) with time-varying coefficients A(t)x(1)(t) + B(t)x(t) = q(t), which are tractable with a higher index. are discussed. Their essential properties are investigated. Some eq... Linear differential-algebraic equations (DAEs) with time-varying coefficients A(t)x(1)(t) + B(t)x(t) = q(t), which are tractable with a higher index. are discussed. Their essential properties are investigated. Some equivalent system,,; are given. Using them the paper shows how to state properly initial and boundary conditions for these DAEs. The existence and uniqueness theory of the solution of the initial and boundary value problems for higher index DAEs are proposed. 展开更多
关键词 differential-algebraic equations INDEX SOLVABILITY EXISTENCE UNIQUENESS
下载PDF
Reconstructed Elzaki Transform Method for Delay Differential Equations with Mamadu-Njoseh Polynomials 被引量:1
13
作者 E. J. Mamadu H. I. Ojarikre 《Journal of Mathematics and System Science》 2019年第2期41-45,共5页
One of the solution techniques used for ordinary differential equations, partial and integral equations is the Elzaki Transform. This paper is an extension of Mamadu and Njoseh [1] numerical procedure (Elzaki transfor... One of the solution techniques used for ordinary differential equations, partial and integral equations is the Elzaki Transform. This paper is an extension of Mamadu and Njoseh [1] numerical procedure (Elzaki transform method (ETM)) for computing delay differential equations (DDEs). Here, a reconstructed Elzaki transform method (RETM) is proposed for the solution of DDEs where Mamadu-Njoseh polynomials are applied as basis functions in the approximation of the analytic solution. Using this strategy, a numerical illustration as in Ref.[1] is provided to the RETM as a basis for comparison to guarantee accuracy and consistency of the method. All numerical computations were performed with MAPLE 18 software. 展开更多
关键词 Elzaki TRANSFORM method Mamadu-Njoseh polynomials DELAY DIFFERENTIAL equations
下载PDF
A NEW ALGORITHM FOR SOLVING DIFFERENTIAL/ALGEBRAIC EQUATIONS OF MULTIBODY SYSTEM DYNAMICS
14
作者 王艺兵 赵维加 潘振宽 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第9期905-912,共8页
The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding disc... The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding discretization method is presented, and the results can be used to implementation of various numerical integration methods. A numerical example is presented finally. 展开更多
关键词 multibody systems differential/algebraic equations numerical analysis
下载PDF
Efficient Numerical Methods for Solving Differential Algebraic Equations 被引量:2
15
作者 Ampon Dhamacharoen 《Journal of Applied Mathematics and Physics》 2016年第1期39-47,共9页
This research aims to solve Differential Algebraic Equation (DAE) problems in their original form, wherein both the differential and algebraic equations remain. The Newton or Newton-Broyden technique along with some i... This research aims to solve Differential Algebraic Equation (DAE) problems in their original form, wherein both the differential and algebraic equations remain. The Newton or Newton-Broyden technique along with some integrators such as the Runge-Kutta method is coupled together to solve the problems. Experiments show that the method developed in this paper is efficient, as it demonstrates that implementation of the method is not difficult, and such method is able to provide approximate solutions with ease within some desired accuracy standards. 展开更多
关键词 Differential-algebraic equations Newton-Broyden Method Index-2 Hessenberg DAE
下载PDF
Application of Bernstein polynomials for solving Fredholm integro-differential-difference equations
16
作者 Esmail Hesameddini Mehdi Shahbazi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第4期475-493,共19页
In this paper,the Bernstein polynomials method is proposed for the numerical solution of Fredholm integro-differential-difference equation with variable coefficients and mixed conditions.This method is using a simple ... In this paper,the Bernstein polynomials method is proposed for the numerical solution of Fredholm integro-differential-difference equation with variable coefficients and mixed conditions.This method is using a simple computational manner to obtain a quite acceptable approximate solution.The main characteristic behind this method lies in the fact that,on the one hand,the problem will be reduced to a system of algebraic equations.On the other hand,the efficiency and accuracy of the Bernstein polynomials method for solving these equations are high.The existence and uniqueness of the solution have been proved.Moreover,an estimation of the error bound for this method will be shown by preparing some theorems.Finally,some numerical experiments are presented to show the excellent behavior and high accuracy of this algorithm in comparison with some other well-known methods. 展开更多
关键词 Fredholm integro-differential-difference equation Bernstein polynomials existence and uniqueness error estimate
下载PDF
ON A REGULARIZATION OF INDEX 2 DIFFERENTIAL-ALGEBRAIC EQUATIONS WITH PROPERLY STATED LEADING TERM
17
作者 刘红 宋永忠 《Acta Mathematica Scientia》 SCIE CSCD 2011年第2期383-398,共16页
In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]' + B(t)x(t) = q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular inde... In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]' + B(t)x(t) = q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular index 1 DAEs are obtained by a regularization method. We study the behavior of the solution of the regularization system via asymptotic expansions. The error analysis between the solutions of the DAEs and its regularization system is given. 展开更多
关键词 Differential-algebraic equations (DAEs) properly stated leading term in-dex REGULARIZATION
下载PDF
NONNEGATIVITY OF SOLUTIONS OF NONLINEAR FRACTIONAL DIFFERENTIAL-ALGEBRAIC EQUATIONS
18
作者 Xiaoli DING Yaolin JIANG 《Acta Mathematica Scientia》 SCIE CSCD 2018年第3期756-768,共13页
Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors. How to obtain the nonnegative solutions of the equations is an important scientific problem. As... Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors. How to obtain the nonnegative solutions of the equations is an important scientific problem. As far as we known, the nonnegativity of solutions of the nonlinear fractional differential-algebraic equations is still not studied. In this article, we investigate the nonnegativity of solutions of the equations. Firstly, we discuss the existence of nonnegative solutions of the equations, and then we show that the nonnegative solution can be approached by a monotone waveform relaxation sequence provided the initial iteration is chosen properly. The choice of initial iteration is critical and we give a method of finding it. Finally, we present an example to illustrate the efficiency of our method. 展开更多
关键词 Fractional differential-algebraic equations nonnegativity of solutions waveform relaxation monotone convergence
下载PDF
Finite Element Orthogonal Collocation Approach for Time Fractional Telegraph Equation with Mamadu-Njoseh Polynomials
19
作者 Ebimene James Mamadu Henrietta Ify Ojarikre Edith Omamuyovwi Maduku 《Journal of Applied Mathematics and Physics》 2023年第9期2585-2596,共12页
Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a ... Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a variational form over a given space, say a Hilbert space, are better numerically handled with the FEM. The FEM algorithm is used in various applications which includes fluid flow, heat transfer, acoustics, structural mechanics and dynamics, electric and magnetic field, etc. Thus, in this paper, the Finite Element Orthogonal Collocation Approach (FEOCA) is established for the approximate solution of Time Fractional Telegraph Equation (TFTE) with Mamadu-Njoseh polynomials as grid points corresponding to new basis functions constructed in the finite element space. The FEOCA is an elegant mixture of the Finite Element Method (FEM) and the Orthogonal Collocation Method (OCM). Two numerical examples are experimented on to verify the accuracy and rate of convergence of the method as compared with the theoretical results, and other methods in literature. 展开更多
关键词 Sobolev Space Finite Element Method Mamadu-Njoseh polynomials Orthogonal Collocation Method Telegraph Equation
下载PDF
On the Numerical Solution of Singular Integral Equation with Degenerate Kernel Using Laguerre Polynomials
20
作者 Khadeejah Sultan Alroogy Musa Adam Aigo 《American Journal of Computational Mathematics》 2023年第1期153-160,共8页
In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function... In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method. 展开更多
关键词 Singular Integral Equation Projection Method Galerkin Method La-guerre polynomials
下载PDF
上一页 1 2 135 下一页 到第
使用帮助 返回顶部