Surface energy and work of adhesion of titanium oxide related materials were investigated.Titanium oxide(TiOx) films were deposited by electron-beam evaporation system using TiO2 as a source material.The films deposit...Surface energy and work of adhesion of titanium oxide related materials were investigated.Titanium oxide(TiOx) films were deposited by electron-beam evaporation system using TiO2 as a source material.The films deposited by various thickness and growth rate were etched subsequently by different plasma using various gases like Ar and O2.TiOx films were further modified by self-assembled monolayer(SAM)of silanes and ultraviolet(UV)irradiation.The surface modified TiOx films showed a wide range of water contact angles from 6.9°to 75.2°.The surface energies of Titania-related films and their work of adhesion with human blood were varied with different surface modification process.X-ray photoelectron spectroscopy(XPS)revealed that hydroxyl group present on the surface explains the hydrophilicity of the surface modified TiOx films.We also suggest that some surface modified samples can provide an excellent hemocompatible surface from the estimated work of adhesion between the surface modified TiOx samples and human blood.展开更多
The application of transparent conductive films in flexible electronics has shown promising prospects recently. Tannic acid(TA) was successfully applied to modifying the surface of polydimethylsiloxane(PDMS) to fhbric...The application of transparent conductive films in flexible electronics has shown promising prospects recently. Tannic acid(TA) was successfully applied to modifying the surface of polydimethylsiloxane(PDMS) to fhbricate highly flexible, transparent and conductive Ag nanowires(NWs) based films. TA modification transformed the PDMS surface from hydrophobicity into hydrophilicity without decreasing the transparence. A sheet resistance(Rs) of 80 Ω/cm^2 with an optical transmittance of 94% was achieved, which was superior to that of indium tin oxide(ITO) films. More importantly, the TA layer enhanced the interaction between Ag NWs and the PDMS substrate. The Ag NWs films on TA modified PDMS substrate exhibited excellent stability in Rs when subjected to a bending test.展开更多
基金Fundamental Research Funds for the Central Universities(N090403002)
文摘Surface energy and work of adhesion of titanium oxide related materials were investigated.Titanium oxide(TiOx) films were deposited by electron-beam evaporation system using TiO2 as a source material.The films deposited by various thickness and growth rate were etched subsequently by different plasma using various gases like Ar and O2.TiOx films were further modified by self-assembled monolayer(SAM)of silanes and ultraviolet(UV)irradiation.The surface modified TiOx films showed a wide range of water contact angles from 6.9°to 75.2°.The surface energies of Titania-related films and their work of adhesion with human blood were varied with different surface modification process.X-ray photoelectron spectroscopy(XPS)revealed that hydroxyl group present on the surface explains the hydrophilicity of the surface modified TiOx films.We also suggest that some surface modified samples can provide an excellent hemocompatible surface from the estimated work of adhesion between the surface modified TiOx samples and human blood.
基金Supported by the National Natural Science Foundation of China(No.51571093).
文摘The application of transparent conductive films in flexible electronics has shown promising prospects recently. Tannic acid(TA) was successfully applied to modifying the surface of polydimethylsiloxane(PDMS) to fhbricate highly flexible, transparent and conductive Ag nanowires(NWs) based films. TA modification transformed the PDMS surface from hydrophobicity into hydrophilicity without decreasing the transparence. A sheet resistance(Rs) of 80 Ω/cm^2 with an optical transmittance of 94% was achieved, which was superior to that of indium tin oxide(ITO) films. More importantly, the TA layer enhanced the interaction between Ag NWs and the PDMS substrate. The Ag NWs films on TA modified PDMS substrate exhibited excellent stability in Rs when subjected to a bending test.