期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Matrix-Material Fabrication Technique and Thermogravimetric Analysis of Banana Fiber Reinforced Polypropylene Composites
1
作者 Nazrul Islam M.A Gafur 《Journal of Building Material Science》 2023年第2期15-24,共10页
From the environmental consideration,it would be very interesting to use natural fibers such as banana,jute or coir as reinforcement materials instead of artificial fibers or any kind of synthetic materials.Natural fi... From the environmental consideration,it would be very interesting to use natural fibers such as banana,jute or coir as reinforcement materials instead of artificial fibers or any kind of synthetic materials.Natural fibers have many advantages over synthetic ones.Polypropylene banana fiber composites(PPBC)are prepared using untreated and alkali-treated banana fibers at 10-25%by weight of the fiber loading.The thermal properties of polypropylene natural fiber composites are very important for technological uses.Thermogravimetric measurements show that the incorporation of banana fiber into PP enhances the thermal stability of composites containing treated fibers,in comparison with untreated fibers.A composite of biodegradable polypropylene(PP)reinforced with short banana natural fibers was prepared by melt blending followed by a hot press molding system.The thermal properties of matrix materials were studied using thermogravimetric analyzers TGA units.It is observed that the introduction of short banana fibers slightly improved the thermo oxidative stability of PP-banana composites.Physical and chemical changes occurred through dehydration,phase transition,molecular orientation,crystallinity disruption,oxidation and decomposition,and incorporation of several functional groups.Systematic investigations of the thermal behavior of polymers in gas,vacuum or inert atmosphere give the knowledge of how change takes place in polymers.To understand such changes thermogravimetric analysis(TGA)and thermal analysis(TG)were performed.It is observed reinforcement of short banana fiber leads to little improvement in the thermooxidative stability of PPBC.Due to the enhancement of thermo-mechanical properties,such composites may be used as building materials namely roof materials,selling materials and many other engineering applications. 展开更多
关键词 polypropylene banana composites(PPBC) Natural fiber Oxidative stability Thermogravimetric analysis(TGA) DECOMPOSITION
下载PDF
Reinforcing effects of modified Kevlar~ fiber on the mechanical properties of wood-flour/polypropylene composites 被引量:7
2
作者 YUAN Fei-pin OU Rong-xian +1 位作者 XIE Yan-jun WANG Qing-wen 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第1期149-153,共5页
Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated w... Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated with NaOH to improve its compatibility with the thermoplastic matrix. Maleated polypropylene (MAPP) was used as a coupling agent to improve the interfacial adhesion between KF, WF, and PP. Incorporation of KF improved the mechanical properties of WF/PP composites. Treatment of KF with NaOH resulted in further improvement in mechanical strength. Addition of 3% MAPP and 2% hydrolyzed KF (HKF) led to an increment of 93.8% in unnotched impact strength, 17.7% in notched impact strength, 86.8% in flexure strength, 50.8% in flexure modulus, and 94.1% in tensile strength compared to traditional WF/PP composites. Scanning electron microscopy of the cryo-fractured section of WF/PP showed that the HKF surface was rougher than the virgin KF, and the KF was randomly distributed in the composites, which might cause a mechanical interlocking between KF and polypropylene molecules in the composites. 展开更多
关键词 Wood flour/polypropylene composite Kevlar fiber HYDROLYSIS REINFORCEMENT impact strength
下载PDF
Preliminary study of viscoelastic properties of MAPP-modified wood flour/polypropylene composites 被引量:4
3
作者 CAO Jin-zhen WANG Yi XU Wei-yue WANG Lei 《Forestry Studies in China》 CAS 2010年第2期85-89,共5页
Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA).... Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic prop- erties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects. 展开更多
关键词 wood flour/polypropylene composite (WPC) maleated polypropylene (MAPP) viscoelastic properties stress relaxa-tion dynamic mechanical analysis (DMA)
下载PDF
Dielectric properties of Simon poplar wood flour/polypropylene composite at oven-dry state 被引量:1
4
作者 WANG Lei CAO Jin-zhen WANG Yi 《Forestry Studies in China》 CAS 2008年第4期265-269,共5页
Interfacial compatibility is a crucial factor to the performance of wood-plastic composites (WPCs). Yet, so far, the coupling mechanisms of WPC have not been completely understood. In order to further clarify the in... Interfacial compatibility is a crucial factor to the performance of wood-plastic composites (WPCs). Yet, so far, the coupling mechanisms of WPC have not been completely understood. In order to further clarify the interfacial coupling mechanism, the dielectric constant and dielectric loss factor of Simon poplar wood flour/polypropylene composites without additives at different wood contents were measured at oven-dry state, and parameters and thermodynamic quantities of the relaxation process were also analyzed and calculated. Consequently, an obvious relaxation process based on the reorientation of methanol groups in amorphous region of wood cell wall was observed exactly that its dielectric loss factor peak decreased with the decreasing wood content within the measured range of 50%-100%. With the trend of dielectric relaxation strength, the two changing trends both revealed that the existence of polypropylene could hinder reorientation of methanol groups. Following the decreasing wood contents, the effect of the hindrance on the dielectric properties turned obvious gradually. It elucidated that introduction of polypropylene caused the quantities of hydrogen bonds formed between each methanol group and the groups around it change. The same conclusion could be drawn from the analysis of thermodynamic quantities during the dielectric relaxation progress. 展开更多
关键词 Simon poplar wood flour/polypropylene composite wood content dielectric relaxation methanol group
下载PDF
Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding 被引量:5
5
作者 Tingting Tang Shanchi Wang +7 位作者 Yue Jiang Zhiguang Xu Yu Chen Tianshu Peng Fawad Khan Jiabing Feng Pingan Song Yan Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第16期66-75,共10页
Flame-retardant composites with high electromagnetic interference(EMI)shielding performance are desirable for electronic device packaging.Despite great potential of MXene for high EMI,it still remains a great challeng... Flame-retardant composites with high electromagnetic interference(EMI)shielding performance are desirable for electronic device packaging.Despite great potential of MXene for high EMI,it still remains a great challenge to develop high-performance flame-retardant polymer/MXene composites with excellent EMI shielding effectiveness because of the poor oxidative stability of MXene.Herein,phosphorylated MXene/polypropylene(PP)composites are prepared by coating phosphorylated MXene on PP fabric followed by spraying polyethylenimine(PEI)and hot-pressing.The phosphorylated MXene proves to be more durable against oxidation than pure MXene due to the protection effect of polyphosphates.Upon hot-pressing,melted PP fibers are fused together at their contact points and thus as-prepared composites are bi-continuous with two interpenetrating phases.The composites show significantly improved thermal stability and flame retardancy relative to pure PP,with a low total heat release(THR)of 3.7 kJ/g and a heat release rate(HRR)of 50.0 W/g,which are reduced by 78%and 87%,respectively.In addition,the composites exhibit a high electrical conductivity of~36,700 S/m and an EMI shielding performance of~90 d B over the whole frequency range of 8–12 GHz with a thickness of~400μm.The as-developed PP/MXene composites hold great promise for reliable protection of next-generation electronic devices working in complex environments. 展开更多
关键词 MXene Flame retardancy polypropylene composite EMI shielding
原文传递
Effect of Wood Variables on the Properties of Wood Fiber-Polypropylene Composites 被引量:1
6
作者 Kouichi SETOYAMA 《Chinese Forestry Science and Technology》 2002年第4期47-54,共8页
The effect of wood species (Chinese fir and Poplar), wood fiber content (10%, 25%, 40%) and wood fiber sizes (16 to 32 mesh, 32-65 mesh, above 65 mesh) on the properties of the wood fiber-Polypropylene composites were... The effect of wood species (Chinese fir and Poplar), wood fiber content (10%, 25%, 40%) and wood fiber sizes (16 to 32 mesh, 32-65 mesh, above 65 mesh) on the properties of the wood fiber-Polypropylene composites were studied in this paper. The results indicate that the effect of wood fiber content and size in composite were more important than that of chosen wood species. Compared with polypropylene without wood fiber, the flexural strength of the composites increased when adding wood fiber into polypr... 展开更多
关键词 wood fiber/polypropylene composite wood fiber content wood fiber size dynamic mechanical properties
原文传递
Dynamic Mechanical Properties of Wood Powder /Polypropylene Composites
7
作者 Yasunori HATANO 《Chinese Forestry Science and Technology》 2003年第1期56-59,共4页
The dynamic mechanical properties of wood powder/polypropylene composites with different wood content treated and untreated with the compatibilizer have been studied. It has been found that addition of wood powders an... The dynamic mechanical properties of wood powder/polypropylene composites with different wood content treated and untreated with the compatibilizer have been studied. It has been found that addition of wood powders and the compatibilizer can both improve the viscoelasticity of composites. Glass transition temperature (Tg) of appropriate wood powder-filled composites decreased. The value for the storage modulus (G') increased gradually with increasing wood powder content. The addition of the compatibiliz... 展开更多
关键词 dynamic mechanical properties wood powder/polypropylene composites COMPATIBILIZER
原文传递
A Study of Fabrication Technique, Structural and Morphological Behavior of Polypropylene Reinforced with Short Natural Fiber Banana
8
作者 MD.NAZRUL ISLAM M.A GAFUR AMIR HOSSAIN KHAN 《Journal of Building Material Science》 2020年第2期1-8,共8页
Fiber reinforced polypropylene has been widely accepted as material for structural and engineering applications in recent years.Jute,Banana fibers etc.are the most common low cost,versatile,renewable and abundantly av... Fiber reinforced polypropylene has been widely accepted as material for structural and engineering applications in recent years.Jute,Banana fibers etc.are the most common low cost,versatile,renewable and abundantly available natural fibers which have biodegradable properties.All these fibers are versatile,renewable and most common agro based fibers that have enormous aspect due to their potentiality in composite manufacture.In comparison to other artificial fibers there are many advantages of natural fibers due to everyday applications such as,paperweight,suitcases,lampshades,helmets,and shower and bath units.Untreated and alkali treated banana fiber reinforced with Polypropylene matrix composite were fabricated with 10-25%loading of fiber by weight and were fabricated as Polypropylene Banana Composite(PPBC).Using melt mixing hot press molding technique these biodegradable composites were prepared.Different characteristics like morphologies and micro structural analysis of the composites were studied by Scanning electron microscope(SEM)and infrared spectroscopy instrument(IR).Due to the concept of group vibration infrared spectroscopy has the extensive application.Any kind of structural change such as addition or substitution of groups or atoms in a molecule may affect the relative mode of vibration of the group.This causes change in IR spectral band position,change in relative intensities and appearance of new bands and disappearance of any band and splitting of a single band into two or more bands.To increase the utility of fiber infrared spectroscopy can also be used.It deals with the interaction of infrared light with matter.The former can indicate the presence of functional groups qualitatively and the latter can provide a semi quantitative measure of their concentrations.On the other hand Electron Microscopy is most widely used to obtain information regarding the morphology of fiber surfaces,especially SEM(Scanning Electron Microscopy).Using SEM,it is easy to determine the differences of fiber surface topography after and before treatment,and hence the formation of fiber polymer composites.Fiber deboning was also observed for untreated and treated fiber pp matrix composite.The SEM can have a magnification range from a few times to several hundred thousand times. 展开更多
关键词 Banana polypropylene composites Natural fiber Hot press molding Spectros-copy biodegradable Matrix Infrared spectroscopy Functional groups Morphology Surface topography
下载PDF
Flame-retardant Wrapped Ramie Fibers towards Suppressing “Candlewick Effect” of Polypropylene/Ramie Fiber Composites 被引量:5
9
作者 Shuang-lan Du Xue-bao Lin +2 位作者 Rong-kun Jian 邓聪 王玉忠 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2015年第1期84-94,共11页
In this work, a flame-retardant polypropylene(PP)/ramie fiber(RF) composite was prepared. The ramie fibers were wrapped chemically by a phosphorus- and nitrogen-containing flame retardant(FR) produced via in sit... In this work, a flame-retardant polypropylene(PP)/ramie fiber(RF) composite was prepared. The ramie fibers were wrapped chemically by a phosphorus- and nitrogen-containing flame retardant(FR) produced via in situ condensation reaction so as to suppress their candlewick effect. Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS) and scanning electron microscopy(SEM) demonstrated that the ramie fibers wrapped chemically by FR(FR-RF) were obtained successfully. Thermogravimatric test showed that the PP/FR-RF composite had more residue and better thermal stability at high temperatures than the PP/RF composite. Cone calorimeter(CC) results indicated that the peak of heat release rate(PHRR) and total heat release(THR) correspondingly decreased by 23.4% and 12.5% compared with the values of neat PP/RF. The PP/FR-RF composite created a continuous and compact char layer after the combustion. Combining FTIR analysis of char residue after CC test with heat conduction coefficient results, it could be concluded that the charring of FR on RF greatly weakened the candlewick effect of RF, and more char residue in the RF domain facilitated the formation of more continuous and compact char layer in the whole combustion zone, consequently protected PP composites during combustion, resulting in the better flame retardancy of PP/FR-RF composite than that of PP/RF composite. 展开更多
关键词 Ramie fiber polypropylene composite Flame retardance Candlewick effect.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部