In this work, polypropylene (PP)/polystyrene (PS) blends with different organoclay concentrations were prepared via melt compounding. Differing from the results of previous reports, the organoclay platelets are mostly...In this work, polypropylene (PP)/polystyrene (PS) blends with different organoclay concentrations were prepared via melt compounding. Differing from the results of previous reports, the organoclay platelets are mostly located in the dispersed PS phase instead of the interface. The dimensions of the dispersed PS droplets are greatly reduced and apparent compatibilization effect still exists, which cannot be explained by the traditional compatibilization mechanism. A novel compatibilization mecha- nism, "cutting" to apparently compatibilize the immiscible PP/PS blends was proposed. The organoclay platelets tend to form a special "knife-like structure" in the PS domain under the shear stress of the continuous PP phase during compounding. The "clay knife" can split the dispersed PS domain apart and lead to the dramatic reduction of the dispersed domain size.展开更多
The hierarchical structure and interfacial morphology of injection-molded bars of polypropylene (PP) based blends and composites have been investigated in detail from the skin to the core. For preparation of injecti...The hierarchical structure and interfacial morphology of injection-molded bars of polypropylene (PP) based blends and composites have been investigated in detail from the skin to the core. For preparation of injection-molded bars with high-level orientation and good interfacial adhesion, a dynamic packing injection molding technology was applied to exert oscillatory shear on the melts during solidification stage. Depending on incorporated component, interfacial adhesion and processing conditions, various oriented structure and morphology could be obtained. First, we will elucidate the epitaxial behavior between PP and high-density polyethylene occurring in practical molded processing. Then, the shear-induced transcrystalline structure will be the main focus for PP/fiber composites. At last, various oriented clay structures have been ascertained unambiguously in PP/organoclay nanocomposites along the thickness of molded bars.展开更多
The effect of time-temperature treatment on morphology of polyethylene-polypropylene (PE-PP) blends wasstudied to establish a relationship between thermal history, morphology and mechanical properties. Polypropylene (...The effect of time-temperature treatment on morphology of polyethylene-polypropylene (PE-PP) blends wasstudied to establish a relationship between thermal history, morphology and mechanical properties. Polypropylene (PP)homopolymers were used to blend with various polyethylenes (PE), including high density polyethylene (HDPE), lowdensity polyethylene (LDPE), linear low density polyethylene (LLDPE), and very and ultra low density polyethylene(VLDPE and ULDPE). The majority of the blends were prepared at a ratio of PE:PP = 80:20, while blends of PP and LLDPEwere prepared at various compositions. Thermal treatment was carried out at temperatures between the crystallizationtemperatures of PP and PEs to allow PP to crystallize first from the blends. On cooling further, PE crystallized too. A verydiffuse PP spherulite morphology in the PE matrix was formed in some partially miscible blends when PP was less than 20%by mass. Droplet-matrix structures were developed in other blends with either PP or PE as dispersed domains in a continuousmatrix, depending on the composition ratio. The scanning electron microscopy (SEM) images displayed a fibrillar structureof PP spherulite in the LLDPE-PP (80:20) and large droplets of PP in the HDPE-PP (80:20) blend, providing larger surfacearea and better bonding in the LLDPE-PP (80:20) blends. This explains why the blends with diffuse spherulite morphologyshowed greater improvement in tensile properties than droplet-matrix morphology blends after time-temperature treatment.展开更多
The method for measuring the spherulite growth rate and studying the morphology of polypropylene - based blends by image processing technology is described. The main advantages of this method, as compared to existing ...The method for measuring the spherulite growth rate and studying the morphology of polypropylene - based blends by image processing technology is described. The main advantages of this method, as compared to existing techniques, are: better reliability; reproducibility; ease of manipulation. Such an approach provides a means of measuring the rate of spherulite growth. In this study, isotactic polypropylene (PP), polystyrene (PS)/PP, and polybutylene terephthalate (PBT)/PP have been studied. The results show that the technology of image analysis is very useful in the study of the kinetics of crystallization of polymer.展开更多
Ultrafine polypropylene fibers are prepared frompolypropylene/easily hydro - degraded polyester (PP/EHDPET) blend fibers, in which file EHDPET compo-nent is degradable by treating with NaOH - H<sub>2</sub&g...Ultrafine polypropylene fibers are prepared frompolypropylene/easily hydro - degraded polyester (PP/EHDPET) blend fibers, in which file EHDPET compo-nent is degradable by treating with NaOH - H<sub>2</sub>O solu-tion. We investigated the morphology of PP/EHDPETblend fibers before and after stretching and alkalinehydrolysis. Then thermal behavior of the blend has alsobeen studied.展开更多
Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the mole...Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the molecular level by means of present experimental techniques,a universal description of both chain conformation and dynamics with respect to continuous volume extensional flow(CVEF)is still absent.Taking into account the temperature effect,we performed dissipative particle dynamics(DPD)simulations with the particles corresponding to the repeat units of polymers over a wide temperature range and analyzed the correlation with the conformational properties of ultra-high molecular weight polyethylene/polypropylene(UHMWPE/PP)blend in response to the CVEF.With time evolution,the polymer chains become highly oriented parallel to the flow direction instead of the initial random coiling and self-aggregation.It is found that a high temperature is necessary for more substantial compactness to take place than low temperature.The low-k plateau and low-k peak in structure factor S(k)curves suggest a low degree of conformational diversity and a high degree of chain stretching.It is also concluded that the intra-molecular C-C bond interaction is the main driving force for the dynamics process of the chain conformations undergoing CVEF,where the motion of the alkyl chains is seriously restricted owing to the increase in bond interaction potential,resulting in a reduction of the difference in diffusion rates among alkyl chains.展开更多
The crystallization and crystalline structure of syndiotactic-polypropylene (sPP) and syndiotactic-poly(1-butene) (sPB) blend containing 10 (Bl-10), 25 (Bl-25), 50 (Bl-50), 75 (Bl-75), and 90 (Bl-90) wt% of sPB, have ...The crystallization and crystalline structure of syndiotactic-polypropylene (sPP) and syndiotactic-poly(1-butene) (sPB) blend containing 10 (Bl-10), 25 (Bl-25), 50 (Bl-50), 75 (Bl-75), and 90 (Bl-90) wt% of sPB, have been investigated by means of differential scanning calorimetry (DSC), FT-IR, and wide-angle X-ray diffraction (WAXD) analyses. The melt-crystallization behavior of the blend samples was studied by DSC on the cooling process at constant rates. Bl-50, Bl-75, and Bl-90 showed lower crystallization temperatures than the neat sPP. sPP in Bl-75 showed the lowest crystallization rate among the blend samples. Bl-90 showed a two-phase molten state, and sPP in Bl-90 crystallized via two-stepprocess. Time evolution of FT-IR spectroscopy at room temperature detected conformational transformation of the sPP polymer chain in the blend samples of Bl-50 and Bl-75. The absorption peaks intensity in the FT-IR spectra derived from the helical conformations in the crystalline phase decreased, and the planar zigzag conformations in the amorphous and mesophase phases decreased over the crystallization time. The time evolution of the WAXD profile of Bl-90 indicated that sPP in the blend accelerated the crystallization of sPB. The crystallized Bl-10, Bl-25, and Bl-50 samples showed diffraction peaks in WAXD profiles and melting endothermic peak in DSC profiles derived from only the sPP crystal. The crystallinity and melting temperature of sPP in the crystallized Bl-10, Bl-25, and Bl-50 samples were almost independent of the sPB content. Both the crystalline structure of sPP and sPB were detected in Bl-75 and Bl-90. Bl-75 showed the lowest crystallinity and melting temperature of sPP among the blend samples.展开更多
The synergism of ethylene-propylene-diene monomer copolymer (EPDM) and dicumyl peroxide (DCP, a crosslinking agent) in low density polyethylene (LDPE)/poly(vinyl chloride) (PVC) blends was investigated. When...The synergism of ethylene-propylene-diene monomer copolymer (EPDM) and dicumyl peroxide (DCP, a crosslinking agent) in low density polyethylene (LDPE)/poly(vinyl chloride) (PVC) blends was investigated. When EDPM and DCP are added to the blends simultaneously, the tensile properties could be improved significantly, especially for the blends with LDPE matrix. For example, incorporation of 10/1 (mass ratio) EPDM/DCP improves the tensile strength of the LDPE/PVC (mass ratio 80/20) blend from 7.9 MPa to 8.5 MPa and the elongation at break from 25% to 503%. Results from selective extraction, phase-contrast microscopy and thermal analysis reveal that the improvement in the tensile properties of the blends with LDPE matrix is principally due to the formation of a fine crosslinking network of the LDPE and EPDM phase. The outstanding modification effect of EPDM is explained by its dual functions: molecular entanglement with LDPE and the enhanced efficiency of DCP in the blends.展开更多
The transition behaviour of the blends of isotactic polypropylene (i-PP) with ethylene-propylene terpolymer (EPDM) containing 42 wt% propylene was investigated by dynamic mechanical analysis technique (DMA). Owing to ...The transition behaviour of the blends of isotactic polypropylene (i-PP) with ethylene-propylene terpolymer (EPDM) containing 42 wt% propylene was investigated by dynamic mechanical analysis technique (DMA). Owing to its high propylene content, EPDM is compatible with i-PP to some degree. The interaction between the two components was strengthened. As expected, for partially compatible system the glass transition temperature of i-PP in the blends shifted to lower temperature. It was found that there existed two transitions, αEPDM and βEPDM, for the EPDM used in this work. The former was considered to be the glass transition of the random chain segments of EPDM, while the latter the local motion of the long ethylene sequences in EPDM. The unusual transition behaviour of αEPDM in the blends was explained in terms of the greater thermal expansion of EPDM and the compatibility of the two components. On the other hand, the βEPDM changed with the composition of the blends in a regular manner.展开更多
文摘In this work, polypropylene (PP)/polystyrene (PS) blends with different organoclay concentrations were prepared via melt compounding. Differing from the results of previous reports, the organoclay platelets are mostly located in the dispersed PS phase instead of the interface. The dimensions of the dispersed PS droplets are greatly reduced and apparent compatibilization effect still exists, which cannot be explained by the traditional compatibilization mechanism. A novel compatibilization mecha- nism, "cutting" to apparently compatibilize the immiscible PP/PS blends was proposed. The organoclay platelets tend to form a special "knife-like structure" in the PS domain under the shear stress of the continuous PP phase during compounding. The "clay knife" can split the dispersed PS domain apart and lead to the dramatic reduction of the dispersed domain size.
基金This work was supported by the National Natural Science Foundation of China (Nos. 20404008, 50533050, 50373030 and 20490220). This work is subsidized by the Special Funds for Major State Basic Research Projects of China (No. 2003CB615600) by Ministry of Education of China as a key project (No. 104154).
文摘The hierarchical structure and interfacial morphology of injection-molded bars of polypropylene (PP) based blends and composites have been investigated in detail from the skin to the core. For preparation of injection-molded bars with high-level orientation and good interfacial adhesion, a dynamic packing injection molding technology was applied to exert oscillatory shear on the melts during solidification stage. Depending on incorporated component, interfacial adhesion and processing conditions, various oriented structure and morphology could be obtained. First, we will elucidate the epitaxial behavior between PP and high-density polyethylene occurring in practical molded processing. Then, the shear-induced transcrystalline structure will be the main focus for PP/fiber composites. At last, various oriented clay structures have been ascertained unambiguously in PP/organoclay nanocomposites along the thickness of molded bars.
文摘The effect of time-temperature treatment on morphology of polyethylene-polypropylene (PE-PP) blends wasstudied to establish a relationship between thermal history, morphology and mechanical properties. Polypropylene (PP)homopolymers were used to blend with various polyethylenes (PE), including high density polyethylene (HDPE), lowdensity polyethylene (LDPE), linear low density polyethylene (LLDPE), and very and ultra low density polyethylene(VLDPE and ULDPE). The majority of the blends were prepared at a ratio of PE:PP = 80:20, while blends of PP and LLDPEwere prepared at various compositions. Thermal treatment was carried out at temperatures between the crystallizationtemperatures of PP and PEs to allow PP to crystallize first from the blends. On cooling further, PE crystallized too. A verydiffuse PP spherulite morphology in the PE matrix was formed in some partially miscible blends when PP was less than 20%by mass. Droplet-matrix structures were developed in other blends with either PP or PE as dispersed domains in a continuousmatrix, depending on the composition ratio. The scanning electron microscopy (SEM) images displayed a fibrillar structureof PP spherulite in the LLDPE-PP (80:20) and large droplets of PP in the HDPE-PP (80:20) blend, providing larger surfacearea and better bonding in the LLDPE-PP (80:20) blends. This explains why the blends with diffuse spherulite morphologyshowed greater improvement in tensile properties than droplet-matrix morphology blends after time-temperature treatment.
基金This project was supported by China Doctoral Special Foundation
文摘The method for measuring the spherulite growth rate and studying the morphology of polypropylene - based blends by image processing technology is described. The main advantages of this method, as compared to existing techniques, are: better reliability; reproducibility; ease of manipulation. Such an approach provides a means of measuring the rate of spherulite growth. In this study, isotactic polypropylene (PP), polystyrene (PS)/PP, and polybutylene terephthalate (PBT)/PP have been studied. The results show that the technology of image analysis is very useful in the study of the kinetics of crystallization of polymer.
文摘Ultrafine polypropylene fibers are prepared frompolypropylene/easily hydro - degraded polyester (PP/EHDPET) blend fibers, in which file EHDPET compo-nent is degradable by treating with NaOH - H<sub>2</sub>O solu-tion. We investigated the morphology of PP/EHDPETblend fibers before and after stretching and alkalinehydrolysis. Then thermal behavior of the blend has alsobeen studied.
基金the National Key R&D Program of China(No.2016YFB0302301)the Guangdong YangFan Innovative&Ente preneurial Research TeamProgram(No.2016YT03C077)+1 种基金the Science and Technology Planning Project of Guangzhou(No.201704020008)the Open Foundation of Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics(Wuhan University of Technology)(No.TAM202001)。
文摘Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the molecular level by means of present experimental techniques,a universal description of both chain conformation and dynamics with respect to continuous volume extensional flow(CVEF)is still absent.Taking into account the temperature effect,we performed dissipative particle dynamics(DPD)simulations with the particles corresponding to the repeat units of polymers over a wide temperature range and analyzed the correlation with the conformational properties of ultra-high molecular weight polyethylene/polypropylene(UHMWPE/PP)blend in response to the CVEF.With time evolution,the polymer chains become highly oriented parallel to the flow direction instead of the initial random coiling and self-aggregation.It is found that a high temperature is necessary for more substantial compactness to take place than low temperature.The low-k plateau and low-k peak in structure factor S(k)curves suggest a low degree of conformational diversity and a high degree of chain stretching.It is also concluded that the intra-molecular C-C bond interaction is the main driving force for the dynamics process of the chain conformations undergoing CVEF,where the motion of the alkyl chains is seriously restricted owing to the increase in bond interaction potential,resulting in a reduction of the difference in diffusion rates among alkyl chains.
文摘The crystallization and crystalline structure of syndiotactic-polypropylene (sPP) and syndiotactic-poly(1-butene) (sPB) blend containing 10 (Bl-10), 25 (Bl-25), 50 (Bl-50), 75 (Bl-75), and 90 (Bl-90) wt% of sPB, have been investigated by means of differential scanning calorimetry (DSC), FT-IR, and wide-angle X-ray diffraction (WAXD) analyses. The melt-crystallization behavior of the blend samples was studied by DSC on the cooling process at constant rates. Bl-50, Bl-75, and Bl-90 showed lower crystallization temperatures than the neat sPP. sPP in Bl-75 showed the lowest crystallization rate among the blend samples. Bl-90 showed a two-phase molten state, and sPP in Bl-90 crystallized via two-stepprocess. Time evolution of FT-IR spectroscopy at room temperature detected conformational transformation of the sPP polymer chain in the blend samples of Bl-50 and Bl-75. The absorption peaks intensity in the FT-IR spectra derived from the helical conformations in the crystalline phase decreased, and the planar zigzag conformations in the amorphous and mesophase phases decreased over the crystallization time. The time evolution of the WAXD profile of Bl-90 indicated that sPP in the blend accelerated the crystallization of sPB. The crystallized Bl-10, Bl-25, and Bl-50 samples showed diffraction peaks in WAXD profiles and melting endothermic peak in DSC profiles derived from only the sPP crystal. The crystallinity and melting temperature of sPP in the crystallized Bl-10, Bl-25, and Bl-50 samples were almost independent of the sPB content. Both the crystalline structure of sPP and sPB were detected in Bl-75 and Bl-90. Bl-75 showed the lowest crystallinity and melting temperature of sPP among the blend samples.
文摘The synergism of ethylene-propylene-diene monomer copolymer (EPDM) and dicumyl peroxide (DCP, a crosslinking agent) in low density polyethylene (LDPE)/poly(vinyl chloride) (PVC) blends was investigated. When EDPM and DCP are added to the blends simultaneously, the tensile properties could be improved significantly, especially for the blends with LDPE matrix. For example, incorporation of 10/1 (mass ratio) EPDM/DCP improves the tensile strength of the LDPE/PVC (mass ratio 80/20) blend from 7.9 MPa to 8.5 MPa and the elongation at break from 25% to 503%. Results from selective extraction, phase-contrast microscopy and thermal analysis reveal that the improvement in the tensile properties of the blends with LDPE matrix is principally due to the formation of a fine crosslinking network of the LDPE and EPDM phase. The outstanding modification effect of EPDM is explained by its dual functions: molecular entanglement with LDPE and the enhanced efficiency of DCP in the blends.
基金This Paper was presented before the Symposium on Polymers,Chengdu,P.R.China.Nov,14-18,1989
文摘The transition behaviour of the blends of isotactic polypropylene (i-PP) with ethylene-propylene terpolymer (EPDM) containing 42 wt% propylene was investigated by dynamic mechanical analysis technique (DMA). Owing to its high propylene content, EPDM is compatible with i-PP to some degree. The interaction between the two components was strengthened. As expected, for partially compatible system the glass transition temperature of i-PP in the blends shifted to lower temperature. It was found that there existed two transitions, αEPDM and βEPDM, for the EPDM used in this work. The former was considered to be the glass transition of the random chain segments of EPDM, while the latter the local motion of the long ethylene sequences in EPDM. The unusual transition behaviour of αEPDM in the blends was explained in terms of the greater thermal expansion of EPDM and the compatibility of the two components. On the other hand, the βEPDM changed with the composition of the blends in a regular manner.