Oleic acid (OA)-modified SiO2 (OA-m-SiO2) nanoparticles were prepared using surface modification method. Infrared spectroscopy (IR) was used to investigate the structure of the OA-m-SiO2 nanoparticles, and the r...Oleic acid (OA)-modified SiO2 (OA-m-SiO2) nanoparticles were prepared using surface modification method. Infrared spectroscopy (IR) was used to investigate the structure of the OA-m-SiO2 nanoparticles, and the result showed that OA attached onto the surface of SiO2 nanoparticles through esterification. Effect of OA concentration on the dispersion stability of OA-m-SiO2 in heptane was also studied, and the result indicated that OA-m-SiO2 nanoparticles were dispersed in heptane more stably than the unmodified ones. OA-m-SiO2 nanoparticles can also be dispersed in polypropylene (PP) matrix in nano-scale. The effect of OA-m-SiO2 on crystallization of PP was studied by means of DSC. It was found that the introduction of OA-m-SiO2 resulted in significant increase in the crystallization temperature, crystallization degree and crystallization rate of PP, and OA-m-SiO2 could effectively induce the formation of β-crystal PP. Effect of OA-m-SiO2 content on mechanical properties of PP/OA-m-SiO2 nanocomposites was also studied. The results show that OA-m-SiO2 can significantly improve the mechanical properties of PP.展开更多
High surface area Nafion/SiO2 nanocomposites with nano-sized Nafion resin particles entrapped and dispersed within the highly porous silica matrix exhibited significantly enhanced activity, high selectivity and long-t...High surface area Nafion/SiO2 nanocomposites with nano-sized Nafion resin particles entrapped and dispersed within the highly porous silica matrix exhibited significantly enhanced activity, high selectivity and long-term stability for the alkylation of benzene with linear C9-C13 alkenes owing to the increased accessibility of Nafion resin-based acid sites to reactants.展开更多
LaF^3+ Yb^3+ , Er^3+ nanoparticles were successfully synthesized using solvothermal treatment, and LaF^3+ Yb^3+ , Er^3+/SiO2 core/shell nanoparticles were also prepared with reverse microemulsion technique. The ...LaF^3+ Yb^3+ , Er^3+ nanoparticles were successfully synthesized using solvothermal treatment, and LaF^3+ Yb^3+ , Er^3+/SiO2 core/shell nanoparticles were also prepared with reverse microemulsion technique. The crystal structure, morphology and photoluminescence properties of as-prepared core/shell nanoparticles were in- vestigated by X-ray diffraction, transmission electron microscopy and fluorescence spectrophotometer. The re- sults showed thatLaF^3+ Yb^3+ , Er^3+ nanoparticles are of hexagonal structure and SiO2 shell is amorphous. The size ofLaF^3+ Yb^3+ , Er^3+. nanoparticles is 13 nm and the LaF^3+ Yb^3+ , Er^3+/SiO2 nanoparticles present clearly a core/shell structure with 12 nm shell thickness. The solubility of LaF^3+ Yb^3+ , Er^3+ nanocrystals in water and the biocompatibility are both improved by the SiO2 shell. The upconversion luminescence spectra suggested that the SiO~ shell has small effect on the upconversion luminescence properties of the LaF^3+ Yb^3+ , Er^3+ nanocrys- tals. The core/shell structure LaF^3+ Yb^3+ , Er^3+ /SiO2. nanopartlcles are expected to be used in biological appli- cations.展开更多
In the presence of Nafion/SiO2 nanocomposite catalyst, the benzylation of aromatic compounds with benzyl chloride proceeded to afford diphenylmethane derivatives in high yields. The catalyst showed high catalytic ac...In the presence of Nafion/SiO2 nanocomposite catalyst, the benzylation of aromatic compounds with benzyl chloride proceeded to afford diphenylmethane derivatives in high yields. The catalyst showed high catalytic activity not only for electron-rich aromatic compounds, but also for electron-poor aromatic compounds. Under identical conditions, the self-benzylation of benzyl chloride, and dibenzylation and/or multi-benzylation of aromatic compounds were negligible.展开更多
Fe3O4:SiO2 nanocomposite powders were synthesized by a two-step process,which included the precipitation of FeCl2 and FeCl3 and the gelation of silicic acid solution derived from water glass.At first,Fe3O4 nanoparticl...Fe3O4:SiO2 nanocomposite powders were synthesized by a two-step process,which included the precipitation of FeCl2 and FeCl3 and the gelation of silicic acid solution derived from water glass.At first,Fe3O4 nanoparticles having a crystallite size of 20 nm were obtained by controlling the ratio of Fe(II) and Fe(III) precursors.In the second step,Fe3O4 particles were embedded in SiO2 matrix by the hydrolysis and subsequent condensation of the silicic acid solution containing Fe3O4 particles.It was found that the Fe3O4 nanoparticles homogenously disperse in the SiO2 matrix.The Fe3O4:SiO2 nanocomposite exhibited an enhanced thermal stability against oxidation compared with pure Fe3O4.FT-IR analysis indicates the presence of the Si-O-Fe bond in the Fe3O4:SiO2 (1:10,mole fraction) nanocomposite.展开更多
A new anatase/SiO2 nanocomposite was synthesized by sol-gel method at room temperature using titanium tetrachloride and tetraethylorthosilicate as raw materials. Characterization of the product was carried out by mean...A new anatase/SiO2 nanocomposite was synthesized by sol-gel method at room temperature using titanium tetrachloride and tetraethylorthosilicate as raw materials. Characterization of the product was carried out by means of X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) specific surface areas, Thermogravimetry analysis (TGA), Fourier transform infrared (FT-IR), and UV-vis absorption spectroscopy. Thermal phase transformation studies of composite were carried out up to 1100°C which showed the establishment of anatase TiO2 phase. The presence of some tetrahedral coordination of TiO2 species in SiO2 matrix was confirmed by UV-Vis study. The produced TiO2/SiO2 nanocomposite has good photocatalytic properties due to its anatase phase, existence of tetrahedral coordination of TiO2 in the SiO2 matrix and very large surface area. Furthermore, the synthesized anatase/SiO2 shows significant adsorption ability towards Congo Red (CR) azo dye in comparison with the pure commercial TiO2 which is known as Degussa, P25.展开更多
Serials of polystyrene/SiO<sub>2</sub> Nano composites (PS/SiO<sub>2</sub>) with different content of inorganic fillers were successfully prepared by the in situ bulk radical polymerization of ...Serials of polystyrene/SiO<sub>2</sub> Nano composites (PS/SiO<sub>2</sub>) with different content of inorganic fillers were successfully prepared by the in situ bulk radical polymerization of styrene under microwave irradiation. The effect of the amount of Nano SiO<sub>2</sub> on the properties of the PS/SiO<sub>2</sub> Nanocomposites along with the average relative molecular masses (Mn, Mz and Mw) was investigated by thermal analysis and X-Ray Diffraction (XRD). Their structural model was proposed on the basis of the Optical Microscopy, FTIR (Fourier Transform Infrared) analysis, differential scanning calorimetry (DSC), gel permeation chromatography (GPC) and X-Ray Diffraction (XRD). The dispersion of nanoparticles in Polystyrene is observed in the magnified image. The effect of microwave irradiation power on molecular weight of polystyrene was also studied. It was found that, the microwave assisted reaction needs less time as compare to conventional polymerization and found to be in between 10 to 15 min.展开更多
A lipophilic silica/metatitantic acid(denoted as Si O2/H2 TiO 3) nanocomposite was synthesized by hydrothermal reaction with surface-modified Si O2 as the lipophilic carrier. As-synthesized Si O2/H2 TiO 3nanocomposi...A lipophilic silica/metatitantic acid(denoted as Si O2/H2 TiO 3) nanocomposite was synthesized by hydrothermal reaction with surface-modified Si O2 as the lipophilic carrier. As-synthesized Si O2/H2 TiO 3nanocomposite was used as a catalyst to promote the aquathermolysis reaction of extra-heavy crude oil thereby facilitating the recovering from the deep reservoirs at lowered temperature. The catalytic performance of the as-synthesized Si O2/H2 TiO 3catalyst for the aquathermolysis reaction of the heavy oil at a moderate temperature of 150 °C was evaluated in relation to the structural characterizations by TEM,FTIR,XRD and FESEM as well as the determination of the specific surface area by N2adsorption–desorption method. Findings indicate that as-synthesized Si O2/H2 TiO 3nanocomposite exhibits an average size of about 20 nm as well as good lipophilicity and dispersibility in various organic solvents; and it shows good catalytic performance for the aquathermolysis reaction of the extra-heavy oil extracted from Shengli Oilfield of China. Namely,the assynthesized Si O2/H2 TiO 3catalyst is capable of significantly reducing the viscosity of the tested heavy oil from58,000 c P to 16,000 c P(referring to a viscosity reduction rate of 72.41%) at a mass fraction of 0.5%,a reaction temperature of 150 °C and a reaction time of 36 h,showing potential application in downhole upgrading heavy crude oils.展开更多
An improved sol-gel method was employed to prepare Eu3+ ions doped SiO2-Y2O3 nanocomposites.Systematic study was carried out on the effect of post-annealing treatment on photoluminescence(PL) properties of the samples...An improved sol-gel method was employed to prepare Eu3+ ions doped SiO2-Y2O3 nanocomposites.Systematic study was carried out on the effect of post-annealing treatment on photoluminescence(PL) properties of the samples under various europium ions doping concentrations.X-ray diffraction(XRD) patterns indicated that the samples showed an amorphous matrix structure,and the scanning electron microscopy(SEM) pictures showed that the samples presented a nano size(from 21 to 42 nm) granular-stack structure after hi...展开更多
Fe_x(SiC_2 )_(1 - x) nanocomposites prepared by using mechanical alloying method were reported. The mi-crostructure character and magnetic properties of Fex (SiO_2) 1 - x nanocomposite samples with different Fe conten...Fe_x(SiC_2 )_(1 - x) nanocomposites prepared by using mechanical alloying method were reported. The mi-crostructure character and magnetic properties of Fex (SiO_2) 1 - x nanocomposite samples with different Fe content and different ball milling time were studied by using X-ray diffraction (XRD), transmission electron microscopy (TEM), Mossbauer spectroscopy, and Faraday magnetic balance in a wide temperature range. The results indicate that the mi-crostructure and magnetic properties are closely related to ball milling time and Fe content. When Fe content is less than 20 wt% , the sample after 80-h ball milling has very complex microstructure. Small α-Fe grains and Fe cluster are implanted in SiO2 matrix. And there are not only isolated α-Fe granular and Fe cluster, but also nanometer scaled sandwich network-like structure. Fex (SiO_2) 1 - x nanocomposite samples display a rich variety of physical and chemical properties as a result of their unique nanostructure, strong interface interaction and inter-osmosis effect in Fe-SiO_2 boundaries, and the grain size effect.展开更多
基金This work was supported by Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry (2004-176).
文摘Oleic acid (OA)-modified SiO2 (OA-m-SiO2) nanoparticles were prepared using surface modification method. Infrared spectroscopy (IR) was used to investigate the structure of the OA-m-SiO2 nanoparticles, and the result showed that OA attached onto the surface of SiO2 nanoparticles through esterification. Effect of OA concentration on the dispersion stability of OA-m-SiO2 in heptane was also studied, and the result indicated that OA-m-SiO2 nanoparticles were dispersed in heptane more stably than the unmodified ones. OA-m-SiO2 nanoparticles can also be dispersed in polypropylene (PP) matrix in nano-scale. The effect of OA-m-SiO2 on crystallization of PP was studied by means of DSC. It was found that the introduction of OA-m-SiO2 resulted in significant increase in the crystallization temperature, crystallization degree and crystallization rate of PP, and OA-m-SiO2 could effectively induce the formation of β-crystal PP. Effect of OA-m-SiO2 content on mechanical properties of PP/OA-m-SiO2 nanocomposites was also studied. The results show that OA-m-SiO2 can significantly improve the mechanical properties of PP.
文摘High surface area Nafion/SiO2 nanocomposites with nano-sized Nafion resin particles entrapped and dispersed within the highly porous silica matrix exhibited significantly enhanced activity, high selectivity and long-term stability for the alkylation of benzene with linear C9-C13 alkenes owing to the increased accessibility of Nafion resin-based acid sites to reactants.
文摘LaF^3+ Yb^3+ , Er^3+ nanoparticles were successfully synthesized using solvothermal treatment, and LaF^3+ Yb^3+ , Er^3+/SiO2 core/shell nanoparticles were also prepared with reverse microemulsion technique. The crystal structure, morphology and photoluminescence properties of as-prepared core/shell nanoparticles were in- vestigated by X-ray diffraction, transmission electron microscopy and fluorescence spectrophotometer. The re- sults showed thatLaF^3+ Yb^3+ , Er^3+ nanoparticles are of hexagonal structure and SiO2 shell is amorphous. The size ofLaF^3+ Yb^3+ , Er^3+. nanoparticles is 13 nm and the LaF^3+ Yb^3+ , Er^3+/SiO2 nanoparticles present clearly a core/shell structure with 12 nm shell thickness. The solubility of LaF^3+ Yb^3+ , Er^3+ nanocrystals in water and the biocompatibility are both improved by the SiO2 shell. The upconversion luminescence spectra suggested that the SiO~ shell has small effect on the upconversion luminescence properties of the LaF^3+ Yb^3+ , Er^3+ nanocrys- tals. The core/shell structure LaF^3+ Yb^3+ , Er^3+ /SiO2. nanopartlcles are expected to be used in biological appli- cations.
文摘In the presence of Nafion/SiO2 nanocomposite catalyst, the benzylation of aromatic compounds with benzyl chloride proceeded to afford diphenylmethane derivatives in high yields. The catalyst showed high catalytic activity not only for electron-rich aromatic compounds, but also for electron-poor aromatic compounds. Under identical conditions, the self-benzylation of benzyl chloride, and dibenzylation and/or multi-benzylation of aromatic compounds were negligible.
基金Project(2011-0015512)supported by the National Research Foundation of Korea(NRF)Grant Funded by the Korea Government(MEST)
文摘Fe3O4:SiO2 nanocomposite powders were synthesized by a two-step process,which included the precipitation of FeCl2 and FeCl3 and the gelation of silicic acid solution derived from water glass.At first,Fe3O4 nanoparticles having a crystallite size of 20 nm were obtained by controlling the ratio of Fe(II) and Fe(III) precursors.In the second step,Fe3O4 particles were embedded in SiO2 matrix by the hydrolysis and subsequent condensation of the silicic acid solution containing Fe3O4 particles.It was found that the Fe3O4 nanoparticles homogenously disperse in the SiO2 matrix.The Fe3O4:SiO2 nanocomposite exhibited an enhanced thermal stability against oxidation compared with pure Fe3O4.FT-IR analysis indicates the presence of the Si-O-Fe bond in the Fe3O4:SiO2 (1:10,mole fraction) nanocomposite.
文摘A new anatase/SiO2 nanocomposite was synthesized by sol-gel method at room temperature using titanium tetrachloride and tetraethylorthosilicate as raw materials. Characterization of the product was carried out by means of X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) specific surface areas, Thermogravimetry analysis (TGA), Fourier transform infrared (FT-IR), and UV-vis absorption spectroscopy. Thermal phase transformation studies of composite were carried out up to 1100°C which showed the establishment of anatase TiO2 phase. The presence of some tetrahedral coordination of TiO2 species in SiO2 matrix was confirmed by UV-Vis study. The produced TiO2/SiO2 nanocomposite has good photocatalytic properties due to its anatase phase, existence of tetrahedral coordination of TiO2 in the SiO2 matrix and very large surface area. Furthermore, the synthesized anatase/SiO2 shows significant adsorption ability towards Congo Red (CR) azo dye in comparison with the pure commercial TiO2 which is known as Degussa, P25.
文摘Serials of polystyrene/SiO<sub>2</sub> Nano composites (PS/SiO<sub>2</sub>) with different content of inorganic fillers were successfully prepared by the in situ bulk radical polymerization of styrene under microwave irradiation. The effect of the amount of Nano SiO<sub>2</sub> on the properties of the PS/SiO<sub>2</sub> Nanocomposites along with the average relative molecular masses (Mn, Mz and Mw) was investigated by thermal analysis and X-Ray Diffraction (XRD). Their structural model was proposed on the basis of the Optical Microscopy, FTIR (Fourier Transform Infrared) analysis, differential scanning calorimetry (DSC), gel permeation chromatography (GPC) and X-Ray Diffraction (XRD). The dispersion of nanoparticles in Polystyrene is observed in the magnified image. The effect of microwave irradiation power on molecular weight of polystyrene was also studied. It was found that, the microwave assisted reaction needs less time as compare to conventional polymerization and found to be in between 10 to 15 min.
基金supported by the National Natural Science Foundation of China (grant Nos.21371047 and 21471047)
文摘A lipophilic silica/metatitantic acid(denoted as Si O2/H2 TiO 3) nanocomposite was synthesized by hydrothermal reaction with surface-modified Si O2 as the lipophilic carrier. As-synthesized Si O2/H2 TiO 3nanocomposite was used as a catalyst to promote the aquathermolysis reaction of extra-heavy crude oil thereby facilitating the recovering from the deep reservoirs at lowered temperature. The catalytic performance of the as-synthesized Si O2/H2 TiO 3catalyst for the aquathermolysis reaction of the heavy oil at a moderate temperature of 150 °C was evaluated in relation to the structural characterizations by TEM,FTIR,XRD and FESEM as well as the determination of the specific surface area by N2adsorption–desorption method. Findings indicate that as-synthesized Si O2/H2 TiO 3nanocomposite exhibits an average size of about 20 nm as well as good lipophilicity and dispersibility in various organic solvents; and it shows good catalytic performance for the aquathermolysis reaction of the extra-heavy oil extracted from Shengli Oilfield of China. Namely,the assynthesized Si O2/H2 TiO 3catalyst is capable of significantly reducing the viscosity of the tested heavy oil from58,000 c P to 16,000 c P(referring to a viscosity reduction rate of 72.41%) at a mass fraction of 0.5%,a reaction temperature of 150 °C and a reaction time of 36 h,showing potential application in downhole upgrading heavy crude oils.
基金supported by the Guangdong Province (2007-173)Jiangmen City (2009-217)
文摘An improved sol-gel method was employed to prepare Eu3+ ions doped SiO2-Y2O3 nanocomposites.Systematic study was carried out on the effect of post-annealing treatment on photoluminescence(PL) properties of the samples under various europium ions doping concentrations.X-ray diffraction(XRD) patterns indicated that the samples showed an amorphous matrix structure,and the scanning electron microscopy(SEM) pictures showed that the samples presented a nano size(from 21 to 42 nm) granular-stack structure after hi...
基金Project supported by the Foundation of State ScienceTechnology Commission of China the Natural Science Foundation of Anhui Province
文摘Fe_x(SiC_2 )_(1 - x) nanocomposites prepared by using mechanical alloying method were reported. The mi-crostructure character and magnetic properties of Fex (SiO_2) 1 - x nanocomposite samples with different Fe content and different ball milling time were studied by using X-ray diffraction (XRD), transmission electron microscopy (TEM), Mossbauer spectroscopy, and Faraday magnetic balance in a wide temperature range. The results indicate that the mi-crostructure and magnetic properties are closely related to ball milling time and Fe content. When Fe content is less than 20 wt% , the sample after 80-h ball milling has very complex microstructure. Small α-Fe grains and Fe cluster are implanted in SiO2 matrix. And there are not only isolated α-Fe granular and Fe cluster, but also nanometer scaled sandwich network-like structure. Fex (SiO_2) 1 - x nanocomposite samples display a rich variety of physical and chemical properties as a result of their unique nanostructure, strong interface interaction and inter-osmosis effect in Fe-SiO_2 boundaries, and the grain size effect.