In this work, we demonstrate a new kind of Pt-free counter electrode for dye-sensitized solar cells(DSCs). Polypyrrole-cobalt-carbon(PPY-Co-C) nanocomposites, with the advantages of low cost and simple preparation, sh...In this work, we demonstrate a new kind of Pt-free counter electrode for dye-sensitized solar cells(DSCs). Polypyrrole-cobalt-carbon(PPY-Co-C) nanocomposites, with the advantages of low cost and simple preparation, show favorable catalytic activity in promoting tri-iodide reduction. The DSC composed of the PPY-Co-C nanocomposite electrode exhibits an acceptable energy conversion efficiency of 6.01%, a considerable short-circuit photocurrent of 15.33 mA cm-2, and a low charge-transfer resistance of 1.5 Ω cm2. The overall performance of PPY-Co-C is superior to the carbon counterparts and comparable with the platinum reference, rendering them efficient and promising counter electrode materials for DSCs.展开更多
基金supported by the National Basic Research Program of China(2011CBA00702)the National Natural Science Foundation of China(21322101)+1 种基金Ministry of Education(B12015,113016A,ACET-13-0296)the Fundamental Research Funds for the Central Universities
文摘In this work, we demonstrate a new kind of Pt-free counter electrode for dye-sensitized solar cells(DSCs). Polypyrrole-cobalt-carbon(PPY-Co-C) nanocomposites, with the advantages of low cost and simple preparation, show favorable catalytic activity in promoting tri-iodide reduction. The DSC composed of the PPY-Co-C nanocomposite electrode exhibits an acceptable energy conversion efficiency of 6.01%, a considerable short-circuit photocurrent of 15.33 mA cm-2, and a low charge-transfer resistance of 1.5 Ω cm2. The overall performance of PPY-Co-C is superior to the carbon counterparts and comparable with the platinum reference, rendering them efficient and promising counter electrode materials for DSCs.