期刊文献+
共找到17,826篇文章
< 1 2 250 >
每页显示 20 50 100
Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium‑Ion Battery Anode 被引量:4
1
作者 Charlie A.F.Nason Ajay Piriya Vijaya Kumar Saroja +3 位作者 Yi Lu Runzhe Wei Yupei Han Yang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期1-16,共16页
With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes ... With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes such as synthetic maturity,longterm cycling stability and fast redox kinetics.Therefore,to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5(KTNO)and its rGO nanocomposite(KTNO/rGO)synthesised via solvothermal methods as a high-performance anode for KIBs.Through effective distribution across the electrically conductive rGO,the electrochemical performance of the KTNO nanoparticles was enhanced.The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g^(−1) and reversible capacity of 97.5 mAh g^(−1) after 500 cycles at 20 mA g^(−1),retaining 76.1%of the initial capacity,with an exceptional rate performance of 54.2 mAh g^(−1)at 1 A g^(−1).Furthermore,to investigate the attributes of KTNO in-situ XRD was performed,indicating a low-strain material.Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage,with the titanium showing greater redox reversibility than the niobium.This work suggests this lowstrain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs. 展开更多
关键词 Potassium-ion batteries INTERCALATION Transition metal oxides anodes NANOCOMPOSITE
下载PDF
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:3
2
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 Low-temperature performance anode materials Microstructural regulations Surface modifications
下载PDF
Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries:Overcoming Challenges and Real-World Applications 被引量:1
3
作者 Mustafa Khan Suxia Yan +6 位作者 Mujahid Ali Faisal Mahmood Yang Zheng Guochun Li Junfeng Liu Xiaohui Song Yong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期341-384,共44页
Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material... Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material pulverization and capacity degradation.Recent research on nanostructured Si aims to mitigate volume expansion and enhance electrochemical performance,yet still grapples with issues like pulverization,unstable solid electrolyte interface(SEI)growth,and interparticle resistance.This review delves into innovative strategies for optimizing Si anodes’electrochemical performance via structural engineering,focusing on the synthesis of Si/C composites,engineering multidimensional nanostructures,and applying non-carbonaceous coatings.Forming a stable SEI is vital to prevent electrolyte decomposition and enhance Li^(+)transport,thereby stabilizing the Si anode interface and boosting cycling Coulombic efficiency.We also examine groundbreaking advancements such as self-healing polymers and advanced prelithiation methods to improve initial Coulombic efficiency and combat capacity loss.Our review uniquely provides a detailed examination of these strategies in real-world applications,moving beyond theoretical discussions.It offers a critical analysis of these approaches in terms of performance enhancement,scalability,and commercial feasibility.In conclusion,this review presents a comprehensive view and a forward-looking perspective on designing robust,high-performance Si-based anodes the next generation of LIBs. 展开更多
关键词 Silicon anode Energy storage NANOSTRUCTURE Prelithiation BINDER
下载PDF
Amphipathic Phenylalanine-Induced Nucleophilic-Hydrophobic Interface Toward Highly Reversible Zn Anode 被引量:1
4
作者 Anbin Zhou Huirong Wang +9 位作者 Fengling Zhang Xin Hu Zhihang Song Yi Chen Yongxin Huang Yanhua Cui Yixiu Cui Li Li Feng Wu Renjie Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期95-109,共15页
Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at t... Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly impede their practical application.In this study,we introduced a ubiquitous biomolecule of phenylalanine(Phe)into the electrolyte as a multifunctional additive to improve the reversibility of the Zn anode.Leveraging its exceptional nucleophilic characteristics,Phe molecules tend to coordinate with Zn^(2+)ions for optimizing the solvation environment.Simultaneously,the distinctive lipophilicity of aromatic amino acids empowers Phe with a higher adsorption energy,enabling the construction of a multifunctional protective interphase.The hydrophobic benzene ring ligands act as cleaners for repelling H_(2)O molecules,while the hydrophilic hydroxyl and carboxyl groups attract Zn^(2+)ions for homogenizing Zn^(2+)flux.Moreover,the preferential reduction of Phe molecules prior to H_(2)O facilitates the in situ formation of an organic-inorganic hybrid solid electrolyte interphase,enhancing the interfacial stability of the Zn anode.Consequently,Zn||Zn cells display improved reversibility,achieving an extended cycle life of 5250 h.Additionally,Zn||LMO full cells exhibit enhanced cyclability of retaining 77.3%capacity after 300 cycles,demonstrating substantial potential in advancing the commercialization of AZIBs. 展开更多
关键词 Zn anode PHENYLALANINE Adsorption energy Solvation sheath
下载PDF
Carbon-based interface engineering and architecture design for high-performance lithium metal anodes 被引量:1
5
作者 Na Zhu Yuxiang Yang +3 位作者 Yu Li Ying Bai Junfeng Rong Chuan Wu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期207-235,共29页
Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electr... Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electrochemical potential.However,owing to inhomogeneous Li-ion flux,Li anodes undergo uncontrollable Li deposition,leading to limited power output and practical applications.Carbon materials and their composites with controllable structures and properties have received extensive attention to guide the homogeneous growth of Li to achieve high-performance Li anodes.In this review,the correlation between the behavior of Li anode and the properties of carbon materials is proposed.Subsequently,we review emerging strategies for rationally designing high-performance Li anodes with carbon materials,including interface engineering(stabilizing solid electrolyte interphase layer and other functionalized interfacial layer)and architecture design of host carbon(constructing three-dimension structure,preparing hollow structure,introducing lithiophilic sites,optimizing geometric effects,and compositing with Li).Based on the insights,some prospects on critical challenges and possible future research directions in this field are concluded.It is anticipated that further innovative works on the fundamental chemistry and theoretical research of Li anodes are needed. 展开更多
关键词 carbon materials DENDRITES HOSTS interfacial layers Li metal anodes
下载PDF
Design of multifunctional polymeric binders in silicon anodes for lithium‐ion batteries 被引量:2
6
作者 Masytha Nuzula Ramdhiny Ju‐Won Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期140-163,共24页
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode... Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle. 展开更多
关键词 CONDUCTIVITY lithium‐ion batteries molecular interactions polymeric binders self‐healability Si anodes
下载PDF
An Electrochemical Perspective of Aqueous Zinc Metal Anode 被引量:1
7
作者 Huibo Yan Songmei Li +1 位作者 Jinyan Zhong Bin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期274-312,共39页
Based on the attributes of nonflammability,environmental benignity,and cost-effectiveness of aqueous electrolytes,as well as the favorable compatibility of zinc metal with them,aqueous zinc ions batteries(AZIBs)become... Based on the attributes of nonflammability,environmental benignity,and cost-effectiveness of aqueous electrolytes,as well as the favorable compatibility of zinc metal with them,aqueous zinc ions batteries(AZIBs)become the leading energy storage candidate to meet the requirements of safety and low cost.Yet,aqueous electrolytes,acting as a double-edged sword,also play a negative role by directly or indirectly causing various parasitic reactions at the zinc anode side.These reactions include hydrogen evolution reaction,passivation,and dendrites,resulting in poor Coulombic efficiency and short lifespan of AZIBs.A comprehensive review of aqueous electrolytes chemistry,zinc chemistry,mechanism and chemistry of parasitic reactions,and their relationship is lacking.Moreover,the understanding of strategies for suppressing parasitic reactions from an electrochemical perspective is not profound enough.In this review,firstly,the chemistry of electrolytes,zinc anodes,and parasitic reactions and their relationship in AZIBs are deeply disclosed.Subsequently,the strategies for suppressing parasitic reactions from the perspective of enhancing the inherent thermodynamic stability of electrolytes and anodes,and lowering the dynamics of parasitic reactions at Zn/electrolyte interfaces are reviewed.Lastly,the perspectives on the future development direction of aqueous electrolytes,zinc anodes,and Zn/electrolyte interfaces are presented. 展开更多
关键词 Aqueous zinc ions batteries Parasitic reactions Aqueous electrolyte Zinc anode
下载PDF
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries 被引量:1
8
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode Interface conductive network Ionic transport Mechanical stability
下载PDF
Electrode/Electrolyte Interfacial Chemistry Modulated by Chelating Effect for High-Performance Zinc Anode 被引量:1
9
作者 Chuanlin Li Guangmeng Qu +2 位作者 Xixi Zhang Chenggang Wang Xijin Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期93-99,共7页
Although Zn metal has been regarded as the most promising anode for aqueous batteries,its practical application is still restricted by side reactions and dendrite growth.Herein,an in-situ solid electrolyte interphase(... Although Zn metal has been regarded as the most promising anode for aqueous batteries,its practical application is still restricted by side reactions and dendrite growth.Herein,an in-situ solid electrolyte interphase(SEI)film formed on the interface of electrode/electrolyte during the plating/stripping of zinc anodes by introducing trace amounts of multidentate ligand sodium diethyldithiocarbamate(DDTC)additive into 1 M ZnSO_(4).The synergistic effect of in-situ solid electrolyte interphase forming and chelate effect endows Zn^(2+)with uniform and rapid interface-diffusion kinetics against dendrite growth and surface side reactions.As a result,the Zn anode in 1 M ZnSO_(4)+DDTC electrolytes displays an ultra-high coulombic efficiency of 99.5%and cycling stability(more than 2000 h),especially at high current density(more than 600 cycles at 40 mA cm^(-2)).Moreover,the Zn//MnO_(2)full cells in the ZnSO_(4)+DDTC electrolyte exhibit outstanding cyclic stability(with 98.6%capacity retention after 2000 cycles at 10 C).This electrode/electrolyte interfacial chemistry modulated strategy provides new insight into enhancing zinc anode stability for high-performance aqueous zinc batteries. 展开更多
关键词 chelating effect in-situ SEI ultra-high current density Zn anodes
下载PDF
Constructing long-cycling crystalline C_(3)N_(4)-based carbonaceous anodes for sodium-ion battery via N configuration control 被引量:2
10
作者 Ying Wang Hongguan Li +5 位作者 Shuanlong Di Boyin Zhai Ping Niu Antonios Kelarakis Shulan Wang Li Li 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期159-171,共13页
Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability st... Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability strongly restrict their practical applications.Coupling carbon nitrides with conductive carbon may relieve these issues.However,little is known about the influence of nitrogen(N)configurations on the interactions between carbon and C_(3)N_(4),which is fundamentally critical for guiding the precise design of advanced C_(3)N_(4)-related electrodes.Herein,highly crystalline C_(3)N_(4)(poly(triazine imide),PTI)based all-carbon composites were developed by molten salt strategy.More importantly,the vital role of pyrrolic-N for enhancing charge transfer and boosting Na+storage of C_(3)N_(4)-based composites,which was confirmed by both theoretical and experimental evidence,was spot-highlighted for the first time.By elaborately controlling the salt composition,the composite with high pyrrolic-N and minimized graphitic-N content was obtained.Profiting from the formation of highly crystalline PTI and electrochemically favorable pyrrolic-N configurations,the composite delivered an unusual reverse growth and record-level cycling stability even after 5000 cycles along with high reversible capacity and outstanding full-cell capacity retention.This work broadens the energy storage applications of C_(3)N_(4) and provides new prospects for the design of advanced all-carbon electrodes. 展开更多
关键词 anode highly crystalline C_(3)N_(4) N configuration sodium-ion batteries ultra-long cyclic stability
下载PDF
Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures 被引量:1
11
作者 Xianfu Zhang Long Zhang +2 位作者 Xinyuan Jia Wen Song Yongchang Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期305-349,共45页
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re... Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented. 展开更多
关键词 Aqueous zinc metal batteries Zinc anodes High zinc utilization Depth of discharge anode-free structures
下载PDF
Surface Patterning of Metal Zinc Electrode with an In‑Region Zincophilic Interface for High‑Rate and Long‑Cycle‑Life Zinc Metal Anode 被引量:1
12
作者 Tian Wang Qiao Xi +8 位作者 Kai Yao Yuhang Liu Hao Fu Venkata Siva Kavarthapu Jun Kyu Lee Shaocong Tang Dina Fattakhova‑Rohlfing Wei Ai Jae Su Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期192-209,共18页
The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially im... The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs. 展开更多
关键词 Zn metal anode Surface patterning Directional Zn deposition Aqueous Zn-I_(2)batteries
下载PDF
Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries 被引量:1
13
作者 Changchun Fan Weijia Meng Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期79-110,I0003,共33页
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi... Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs. 展开更多
关键词 Aqueous zinc metal batteries Zinc metal anode Interfacial modification Artificial interfacial coating In-situ interfacial coating
下载PDF
Synergistic effect of carbon nanotube and encapsulated carbon layer enabling high-performance SnS_2-based anode for lithium storage 被引量:1
14
作者 Chunwei Dong Yongjin Xia +7 位作者 Zhijiang Su Zhihua Han Yang Dong Jingyun Chen Fei Hao Qiyao Yu Qing Jiang Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期700-709,I0015,共11页
Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and hug... Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and huge volumetric change during the lithiation/delithiation process lead to a rapid capacity decay of the battery,hindering its commercialization.To address these issues,herein,SnS_(2) is in-situ grown on the surface of carbon nanotubes(CNT)and then encapsulated with a layer of porous amorphous carbon(CNT/SnS_(2)@C)by simple solvothermal and further carbonization treatment.The synergistic effect of CNT and porous carbon layer not only enhances the electrical co nductivity of SnS_(2) but also limits the huge volumetric change to avoid the pulverization and detachment of SnS_(2).Density functional theo ry calculations show that CNT/SnS_(2)@C has high Li^(+)adsorption and lithium storage capacity achieving high reaction kinetics.Consequently,cells with the CNT/SnS_(2)@C anode exhibit a high lithium storage capacity of 837mAh/g after 100 cycles at 0.1 A/g and retaining a capacity of 529.8 mAh/g under 1.0 A/g after 1000 cycles.This study provides a fundamental understanding of the electrochemical processes and beneficial guidance to design high-performance SnS_(2)-based anodes for LIBs. 展开更多
关键词 Lithium-ion batteries Porous amorphous carbon Carbon nanotubes SnS_(2)-based anode Density functional theory calculations
下载PDF
Microstructure design of advanced magnesium-air battery anodes
15
作者 Xu Huang Qingwei Dai +4 位作者 Qing Xiang Na Yang Gaopeng Zhang Ao Shen Wanming Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期443-464,共22页
Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy de... Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy density,low cost,and recyclability.However,the study on Mg-air battery(MAB)is still at the laboratory level currently,mainly owing to the low anodic efficiency caused by the poor corrosion resistance.In order to reduce corrosion losses and achieve optimal utilization efficiency of Mg anode,the design strategies are reviewed from microstructure perspectives.Firstly,the corrosion behaviors have been discussed,especially the negative difference effect derived by hydrogen evolution.Special attention is given to the effect of anode micro-structures on the MAB,which includes grain size,grain orientation,second phases,crystal structure,twins,and dislocations.For further improvement,the discharge performance,long period stacking ordered phase and its enhancing effect are considered.Meanwhile,given the current debates over Mg dendrites,the potential risk,the impact on discharge,and the elimination strategies are discussed.Microstructure control and single crystal would be promising ways for MAB anode. 展开更多
关键词 MAGNESIUM Air battery anode MICROSTRUCTURE anodic efficiency
下载PDF
Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries
16
作者 Jiabing Miao Yingxiao Du +5 位作者 Ruotong Li Zekun Zhang Ningning Zhao Lei Dai Ling Wang Zhangxing He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期33-47,共15页
Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zin... Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides,transition metal sulfides, MXene(two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs. 展开更多
关键词 zinc ion batteries anode zinc metal-free anode recent advances PERSPECTIVES
下载PDF
Mitigated reaction kinetics between lithium metal anodes and electrolytes by alloying lithium metal with low-content magnesium
17
作者 Yang-Yang Wang Ya-Nan Wang +9 位作者 Nan Yao Shu-Yu Sun Xiao-Qing Ding Chen-Xi Bi Qian-Kui Zhang Zhao Zheng Cheng-Bin Jin Bo-Quan Li Xue-Qiang Zhang Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期644-650,I0014,共8页
Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reserv... Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes. 展开更多
关键词 Lithium metal anodes ALLOYING anode/electrolyte interface Reaction kinetics Pouch cell
下载PDF
Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries:A review
18
作者 Hua-ming YU Dong-ping CHEN +6 位作者 Li-jin ZHANG Shao-zhen HUANG Liang-jun ZHOU Gui-chao KUANG Wei-feng WEI Li-bao CHEN Yue-jiao CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3118-3150,共33页
Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrit... Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs. 展开更多
关键词 aqueous zinc-ion battery anode/electrolyte interface zinc anode aqueous electrolyte electrolyte engineering electrolyte additives
下载PDF
High-stable and High-capacity Sn/SnO_(2)@C as Anode of Lithium-ion Batteries
19
作者 徐天星 WU Jie +1 位作者 李亚娟 肖宏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期805-813,共9页
We synthesized size-controllable nanoparticles with homogeneous distribution of carbon and Sn/SnO_(2)by a solvothermal method.The effects of different carbon content and hydrothermal time on the composition,morphology... We synthesized size-controllable nanoparticles with homogeneous distribution of carbon and Sn/SnO_(2)by a solvothermal method.The effects of different carbon content and hydrothermal time on the composition,morphology and electrochemical properties of the materials were investigated.Compared with bulk materials,nanoparticles materials not only have high specific surface area,but also can provide abundant reaction sites,thus enhancing the electrochemical activity of electrode materials.More importantly,the optimized microspheres Sn/8C-24 delivers a superior electrochemical performance,achieving a specific discharge capacity of 700.4 mAh·g^(-1)after 150 cycles at 0.5 A·g^(-1),and the Coulomb efficiency reaches 98.65%,which is promising for anode of LIBs. 展开更多
关键词 SN anode nanoparticles hydrothermal method
下载PDF
From 0D to 3D:Hierarchical structured high-performance free-standing silicon anodes based on binder-induced topological network architecture
20
作者 Yihong Tong Ruicheng Cao +4 位作者 Guanghui Xu Yifeng Xia Hongyuan Xu Hong Jin Hui Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期16-23,I0002,共9页
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ... Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges. 展开更多
关键词 Topological network SELF-STABILIZATION FLEXIBILITY FREE-STANDING Silicon anode
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部