The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Padé approximation.The effect of dielectric constant...The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Padé approximation.The effect of dielectric constant contrast and filling factor on photonic bandgap (PBG) for perfect PCs and localized states in PCs with point defects are investigated.The resonant frequencies and quality factors are calculated for PCs with different defects.The numerical results show that it is possible to modulate the location,width and number of PBGs and frequencies of the localized states only by changing the dielectric constant contrast and filling factor.展开更多
The colloidal crystal template or opal with a closed-packed face centered cubic (fcc) lattice, was prepared from monodisperse polystyrene (PS) spheres by gravity sedimentation. The template was used for the generatio...The colloidal crystal template or opal with a closed-packed face centered cubic (fcc) lattice, was prepared from monodisperse polystyrene (PS) spheres by gravity sedimentation. The template was used for the generation of photonic crystal. The template provided void space for infiltration of liquid precursor composed of titanium butyloxide, barium acetate, ethanol, and acetic acid. The opal composite was hydrolyzed, dried, sintered by heating for completely removing PS spheres to form BaTiO3 photonic crystals with inverse opal structure. The PS spheres were replaced by air spheres, which interconnected each other through the windows on the BaTiO3 wall. So both the BaTiO3 wall and air void constitute continuous phases.展开更多
The colloidal crystal template or opal with a closed-packed face-centered cubic (fcc) lattice was prepared from monodisperse polystyrene (PS) spheres by vertical sedimentation. The template provided void space for...The colloidal crystal template or opal with a closed-packed face-centered cubic (fcc) lattice was prepared from monodisperse polystyrene (PS) spheres by vertical sedimentation. The template provided void space for infiltration of monomer precursor composed of acrylate acid, acrylamide and ammonium-persulfate, as well as microgel from the subsequent copolymerization. The sample was immersed in dimethylbenzene for completely removing PS spheres to form PAM inverse opal hydrogels (IOHPAM) or PAM/PAA inverse opal hydrogels (IOHPAM/PAA) photonic crystals. The PS spheres were replaced by air spheres, which interconnected each other through the windows. The study of responses to pH show that there are two peaks for both IOHPAM and IOHPAM/PAA films, but the IOHPAM/PAA peaks shift to higher pH, and the peaks are independent with the AA content.展开更多
The present paper covers the various photonic crystals(PhCs) structures mimicking real atom-lattice structures in electronic crystals by using the femtosecond laser-induced two-photon photopolymerization of SU-8 res...The present paper covers the various photonic crystals(PhCs) structures mimicking real atom-lattice structures in electronic crystals by using the femtosecond laser-induced two-photon photopolymerization of SU-8 resin. The bandgap properties were investigated by varying the crystal orientations in 〈111 〉, 〈110〉 and 〈100〉 of diamond-lattice PhCs. The photonic stop gaps were present at λ=3.88 um in 〈111〉 direction, λ=4.01 um in 〈110〉 direction and λ=5.30 um in 〈100〉 direction, respectively. In addition, defects were introduced in graphite-lattice PhCs and the strong localization of photons in this structure with defects at λ=5 um was achieved. All the above work shows the powerful capability of femtosecond laser fabrication in manufacturing various complicated threedimensional photonic crystals and of controlling photons by inducing defects in the PhCs samples.展开更多
A thermal-responsive photonic crystal material was fabricated by forming an inverse opal nanocomposite hydrogel of poly(N-isopropylacrylamide)(IONHPNIPAm)within the interstitial space of a polystyrene photonic crystal...A thermal-responsive photonic crystal material was fabricated by forming an inverse opal nanocomposite hydrogel of poly(N-isopropylacrylamide)(IONHPNIPAm)within the interstitial space of a polystyrene photonic crystal template.In IONHPNIPAm,PNIPAm were physically cross-linked with two kinds of nanoparticles(carbon dots and laponite clays).The integration of carbon dots and laponite clays for physical crosslinking endowed IONHPNIPAm sufficient strength and self-healing property.IONHPNIPAm films can be completely peeled from the substrates to be utilized as an independent photonic crystal material.The structural color and optical diffraction of the IONHPNIPAm exhibits a rapid reversible change in response to external thermal stimuli due to its physical cross-linking feature.Moreover,the IONHPNIPAm shows clear fluorescence due to the introduction of carbon dots,which enables a convenient way for chemical detection(such as the detection of silver ions).This stimuli-responsive photonic crystal materials based on physically cross-linked inverse opal nanocomposite hydrogels with fast response and good mechanical stability are promising for applications in the fields of smart optical detectors,thermal-responsive sensors and chemical detectors.展开更多
One-dimensional photonic crystals (1D PhCs) have a unique ability to control the propagation of light waves, however certain classes of 1D oxides remain relatively unexplored for use as PhCs. Specifically, there has n...One-dimensional photonic crystals (1D PhCs) have a unique ability to control the propagation of light waves, however certain classes of 1D oxides remain relatively unexplored for use as PhCs. Specifically, there has not been a comparative study of the three different 1D PhC structures to compare the influence of layer thickness, number, and refractive index on the ability of the PhCs to control light transmission. Herein, we use the transfer matrix method (TMM) to theoretically examine the transmission of 1D PhCs composed of layers of TiO<sub>2</sub>/SiO<sub>2</sub>, TiO<sub>2</sub>/SnO<sub>2</sub>, SiO<sub>2</sub>/SnO<sub>2</sub>, and combinations of the three with various top and bottom layer thicknesses to cover a substantial region of the electromagnetic spectrum (UV to NIR). With increasing layer numbers for TiO<sub>2</sub>/SiO<sub>2</sub> and SiO<sub>2</sub>/SnO<sub>2</sub>, the edges became sharper and wider and the photonic bandgap width increased. Moreover, we demonstrated that PhCs with significantly thick TiO<sub>2</sub>/SiO<sub>2</sub> layers had a high transmittance for a wide bandgap, allowing for wide-band optical filter applications. These different PhC architectures could enable a variety of applications, depending on the properties needed.展开更多
To save finite-difference time-domain(FDTD) computing time, several methods are proposed to convert the time domain FDTD output into frequency domain. The Pad6 approximation with Baker's algorithm and the program a...To save finite-difference time-domain(FDTD) computing time, several methods are proposed to convert the time domain FDTD output into frequency domain. The Pad6 approximation with Baker's algorithm and the program are introduced to simulate photonic crystal structures. For a simple pole system with frequency 160THz and quality factor of 5000, the intensity spectrum obtained by the Padé approximation from a 2^8-item sequence output is more exact than that obtained by fast Fourier transformation from a 2^20-item sequence output. The mode frequencies and quality factors are calculated at different wave vectors for the photonic crystal slab from a much shorter FDTD output than that required by the FFT method, and then the band diagrams are obatined. In addition, mode frequencies and Q-factors are calculated for photonic crystal microcavity.展开更多
A two-dimensional (2D) photonic crystal waveguide in the Г-K direction with triangular lattice on a silicon-on-insulator (SOI) substrate in the near-infrared band is fabricated by the combination of electron beam...A two-dimensional (2D) photonic crystal waveguide in the Г-K direction with triangular lattice on a silicon-on-insulator (SOI) substrate in the near-infrared band is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. Its transmission characteristics are analysed from the stimulated band diagram by the effective index and the 2D plane wave expansion (PWE) methods. In the experiment, the transmission band edge in a longer wavelength of the photonic crystal waveguide is about 1590 nm, which is in good qualitative agreement with the simulated value. However, there is a disagreement between the experimental and the simulated results when the wavelength ranges from 1607 to 1630 nm, which can be considered as due to the unpolarized source used in the transmission measurement.展开更多
An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of twodimensional(2D) metal/dielectric photonic crystals.Based on the photonic band structures,the dependence of fl...An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of twodimensional(2D) metal/dielectric photonic crystals.Based on the photonic band structures,the dependence of flat bands and photonic bandgaps on two parameters(dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric(M/D) photonic crystals,hole and cylinder photonic crystals.The simulation results show that band structures are affected greatly by these two parameters.Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters.It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones,and the frequency ranges of bandgaps also depend strongly on these parameters.Besides,the photonic crystals containing metallic medium can obtain more modulation of photonic bands,band gaps,and large effective refractive index,etc.than the dielectric/dielectric ones.According to the numerical results,the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters.展开更多
This paper reports that a two-dimensional single-defect photonic crystal waveguide in the Г-K direction with triangular lattice on a silicon-on-insulator substrate is fabricated by the combination of electron beam li...This paper reports that a two-dimensional single-defect photonic crystal waveguide in the Г-K direction with triangular lattice on a silicon-on-insulator substrate is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. A ministop band (MSB) is observed by the measurement of transmission characteristics. It results from the coupling between the two modes with the same symmetry, which is analysed from the stimulated band diagram by the effective index and the two-dimensional plane wave expansion methods. The parameter working on the MSB is the ratio of the radius of air holes to the lattice constant, fla. It is obtained that the critical τ/a value determining the occurrence or disappearance of MSB is 0.36. When τ/a is larger than or equal to 0.36, the MSB occurs. However, when τ/a is smaller than 0.36, the MSB disappears.展开更多
This paper investigates the zero dispersion wavelength and dispersion slope control of hollow-core photonic bandgap fibres (PBGFs) by using a full-vector finite element method. By simulation we found that theoretica...This paper investigates the zero dispersion wavelength and dispersion slope control of hollow-core photonic bandgap fibres (PBGFs) by using a full-vector finite element method. By simulation we found that theoretically the zero dispersion wavelength can be tailored by respectively changing the rounded diameter of air holes, pitch, refractive index, normalized thickness of core rings, and hole diameter to pitch ratio. At the same time the tailoring of dispersion slope can also be realized by changing the rounded diameter of air holes or pitch or normalized thickness of core rings. To illustrate the reasonability of fibre designs, this paper also gives the variance of normalized interface field intensity which measures the scattering loss relatively versus wavelength for different designs. From the viewpoint of loss, varying the rounded diameter and the thickness of core ring could shift zero wavelength but it is difficult to get the required parameters within so tiny range in practical drawing of PBGFs, on the other hand, it is possible in practice to respectively alter the pitch and refractive index to shift zero wavelength. But varying hole diameter to pitch ratio is not worthwhile because they each induce large increase of loss and narrowness of transmission bandwidth. The zero dispersion wavelength can be engineered by respectively varying the rounded diameter of air holes, pitch, refractive index, and normalized thickness of core rings without incurring large loss penalties.展开更多
The macropore silica colloidal crystal templates were assembled orderly in a capillary glass tube by an applied electric field method to control silica deposition. In order to achieve the photonic band gap (PBG) of ...The macropore silica colloidal crystal templates were assembled orderly in a capillary glass tube by an applied electric field method to control silica deposition. In order to achieve the photonic band gap (PBG) of colloidal crystal in optical communication waveband, the diameter of silica microspheres is selected by Bragg diffraction formula. An experiment was designed to test the bandgap of the silica crystal templates. This paper discusses the formation process and the close-packed fashion of the silica colloidal crystal templates was discussed. The surface morphology of the templates was also analyzed. The results showed that the close-packed fashion of silica array templates was face-centered cubic (FCC) structure: The agreement is very good between the experimental data and the theoretical calculation.展开更多
The optical reflective spectra and microstruc-tures of polystyrene opal photonic crystals treated with different temperatures have been investigated. With temperature increasing, the polystyrene spheres in opal struct...The optical reflective spectra and microstruc-tures of polystyrene opal photonic crystals treated with different temperatures have been investigated. With temperature increasing, the polystyrene spheres in opal structure transform to dodecahedrons, and the peak of reflective spectrum moves to shorter wavelength. The experiment result testifies the effect of the effective refractive index and the filling ratio to the bandgap position, and it corresponds to the theoretical simulative result.展开更多
Owing to its photonic band gap(PBG)and slow light effects,aniline black(AB)-poly(vinylidene fluoride)(PVDF)inverse opal(IO)photonic crystal(PC)was constructed to promote the utility of light and realize photothermal s...Owing to its photonic band gap(PBG)and slow light effects,aniline black(AB)-poly(vinylidene fluoride)(PVDF)inverse opal(IO)photonic crystal(PC)was constructed to promote the utility of light and realize photothermal synergetic catalysis.As a highly efficient reaction platform with the capability of restricting heat,a microreactor was introduced to further amplify the photothermal effects of near infrared(NIR)radiation.The photocatalytic efficiency of ZnO/0.5AB-PVDF IO(Z0.5A)increases 1.63-fold compared to that of pure ZnO film under a full solar spectrum,indicating the effectiveness of synergetic promotion by slow light and photothermal effects.Moreover,a 5.85-fold increase is achieved by combining Z0.5A with a microreactor compared to the film in a beaker.The photon localization effect of PVDF IO was further exemplified by finite-difference time-domain(FDTD)calculations.In conclusion,photonic crystal-microreactor enhanced photothermal catalysis has immense potential for alleviating the deteriorating water environment.展开更多
文摘The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Padé approximation.The effect of dielectric constant contrast and filling factor on photonic bandgap (PBG) for perfect PCs and localized states in PCs with point defects are investigated.The resonant frequencies and quality factors are calculated for PCs with different defects.The numerical results show that it is possible to modulate the location,width and number of PBGs and frequencies of the localized states only by changing the dielectric constant contrast and filling factor.
文摘The colloidal crystal template or opal with a closed-packed face centered cubic (fcc) lattice, was prepared from monodisperse polystyrene (PS) spheres by gravity sedimentation. The template was used for the generation of photonic crystal. The template provided void space for infiltration of liquid precursor composed of titanium butyloxide, barium acetate, ethanol, and acetic acid. The opal composite was hydrolyzed, dried, sintered by heating for completely removing PS spheres to form BaTiO3 photonic crystals with inverse opal structure. The PS spheres were replaced by air spheres, which interconnected each other through the windows on the BaTiO3 wall. So both the BaTiO3 wall and air void constitute continuous phases.
基金supported by the National Natural Science Foundation of China(No.50473044).
文摘The colloidal crystal template or opal with a closed-packed face-centered cubic (fcc) lattice was prepared from monodisperse polystyrene (PS) spheres by vertical sedimentation. The template provided void space for infiltration of monomer precursor composed of acrylate acid, acrylamide and ammonium-persulfate, as well as microgel from the subsequent copolymerization. The sample was immersed in dimethylbenzene for completely removing PS spheres to form PAM inverse opal hydrogels (IOHPAM) or PAM/PAA inverse opal hydrogels (IOHPAM/PAA) photonic crystals. The PS spheres were replaced by air spheres, which interconnected each other through the windows. The study of responses to pH show that there are two peaks for both IOHPAM and IOHPAM/PAA films, but the IOHPAM/PAA peaks shift to higher pH, and the peaks are independent with the AA content.
基金Supported by the National Natural Science Foundation of China(Nos60525412 and 60677018)
文摘The present paper covers the various photonic crystals(PhCs) structures mimicking real atom-lattice structures in electronic crystals by using the femtosecond laser-induced two-photon photopolymerization of SU-8 resin. The bandgap properties were investigated by varying the crystal orientations in 〈111 〉, 〈110〉 and 〈100〉 of diamond-lattice PhCs. The photonic stop gaps were present at λ=3.88 um in 〈111〉 direction, λ=4.01 um in 〈110〉 direction and λ=5.30 um in 〈100〉 direction, respectively. In addition, defects were introduced in graphite-lattice PhCs and the strong localization of photons in this structure with defects at λ=5 um was achieved. All the above work shows the powerful capability of femtosecond laser fabrication in manufacturing various complicated threedimensional photonic crystals and of controlling photons by inducing defects in the PhCs samples.
基金Funded by the National Natural Science Foundation of China(No.51873167)the National Innovation and Entrepreneurship Training Program for College Students(No.S202010497024)。
文摘A thermal-responsive photonic crystal material was fabricated by forming an inverse opal nanocomposite hydrogel of poly(N-isopropylacrylamide)(IONHPNIPAm)within the interstitial space of a polystyrene photonic crystal template.In IONHPNIPAm,PNIPAm were physically cross-linked with two kinds of nanoparticles(carbon dots and laponite clays).The integration of carbon dots and laponite clays for physical crosslinking endowed IONHPNIPAm sufficient strength and self-healing property.IONHPNIPAm films can be completely peeled from the substrates to be utilized as an independent photonic crystal material.The structural color and optical diffraction of the IONHPNIPAm exhibits a rapid reversible change in response to external thermal stimuli due to its physical cross-linking feature.Moreover,the IONHPNIPAm shows clear fluorescence due to the introduction of carbon dots,which enables a convenient way for chemical detection(such as the detection of silver ions).This stimuli-responsive photonic crystal materials based on physically cross-linked inverse opal nanocomposite hydrogels with fast response and good mechanical stability are promising for applications in the fields of smart optical detectors,thermal-responsive sensors and chemical detectors.
文摘One-dimensional photonic crystals (1D PhCs) have a unique ability to control the propagation of light waves, however certain classes of 1D oxides remain relatively unexplored for use as PhCs. Specifically, there has not been a comparative study of the three different 1D PhC structures to compare the influence of layer thickness, number, and refractive index on the ability of the PhCs to control light transmission. Herein, we use the transfer matrix method (TMM) to theoretically examine the transmission of 1D PhCs composed of layers of TiO<sub>2</sub>/SiO<sub>2</sub>, TiO<sub>2</sub>/SnO<sub>2</sub>, SiO<sub>2</sub>/SnO<sub>2</sub>, and combinations of the three with various top and bottom layer thicknesses to cover a substantial region of the electromagnetic spectrum (UV to NIR). With increasing layer numbers for TiO<sub>2</sub>/SiO<sub>2</sub> and SiO<sub>2</sub>/SnO<sub>2</sub>, the edges became sharper and wider and the photonic bandgap width increased. Moreover, we demonstrated that PhCs with significantly thick TiO<sub>2</sub>/SiO<sub>2</sub> layers had a high transmittance for a wide bandgap, allowing for wide-band optical filter applications. These different PhC architectures could enable a variety of applications, depending on the properties needed.
文摘To save finite-difference time-domain(FDTD) computing time, several methods are proposed to convert the time domain FDTD output into frequency domain. The Pad6 approximation with Baker's algorithm and the program are introduced to simulate photonic crystal structures. For a simple pole system with frequency 160THz and quality factor of 5000, the intensity spectrum obtained by the Padé approximation from a 2^8-item sequence output is more exact than that obtained by fast Fourier transformation from a 2^20-item sequence output. The mode frequencies and quality factors are calculated at different wave vectors for the photonic crystal slab from a much shorter FDTD output than that required by the FFT method, and then the band diagrams are obatined. In addition, mode frequencies and Q-factors are calculated for photonic crystal microcavity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60336010 and 60537010). Acknowledgments The authors would like to thank Dr Han Wei-Hua, Dr Fan Zhong-Chao, and Mr Xing-Bo of the Institute of Semiconductors, Chinese Academy of Sciences, for their useful discussions and great help in the experiment and optical measurements.
文摘A two-dimensional (2D) photonic crystal waveguide in the Г-K direction with triangular lattice on a silicon-on-insulator (SOI) substrate in the near-infrared band is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. Its transmission characteristics are analysed from the stimulated band diagram by the effective index and the 2D plane wave expansion (PWE) methods. In the experiment, the transmission band edge in a longer wavelength of the photonic crystal waveguide is about 1590 nm, which is in good qualitative agreement with the simulated value. However, there is a disagreement between the experimental and the simulated results when the wavelength ranges from 1607 to 1630 nm, which can be considered as due to the unpolarized source used in the transmission measurement.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB922200)the National Natural Science Foundation of China(Grant No.605210010)
文摘An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of twodimensional(2D) metal/dielectric photonic crystals.Based on the photonic band structures,the dependence of flat bands and photonic bandgaps on two parameters(dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric(M/D) photonic crystals,hole and cylinder photonic crystals.The simulation results show that band structures are affected greatly by these two parameters.Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters.It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones,and the frequency ranges of bandgaps also depend strongly on these parameters.Besides,the photonic crystals containing metallic medium can obtain more modulation of photonic bands,band gaps,and large effective refractive index,etc.than the dielectric/dielectric ones.According to the numerical results,the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60336010 and 60537010)
文摘This paper reports that a two-dimensional single-defect photonic crystal waveguide in the Г-K direction with triangular lattice on a silicon-on-insulator substrate is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. A ministop band (MSB) is observed by the measurement of transmission characteristics. It results from the coupling between the two modes with the same symmetry, which is analysed from the stimulated band diagram by the effective index and the two-dimensional plane wave expansion methods. The parameter working on the MSB is the ratio of the radius of air holes to the lattice constant, fla. It is obtained that the critical τ/a value determining the occurrence or disappearance of MSB is 0.36. When τ/a is larger than or equal to 0.36, the MSB occurs. However, when τ/a is smaller than 0.36, the MSB disappears.
基金supported by the National Natural Science Foundation of China (Grant No 60578043)the Beijing Education Committee Common Build Foundation (Grant No XK100130637)
文摘This paper investigates the zero dispersion wavelength and dispersion slope control of hollow-core photonic bandgap fibres (PBGFs) by using a full-vector finite element method. By simulation we found that theoretically the zero dispersion wavelength can be tailored by respectively changing the rounded diameter of air holes, pitch, refractive index, normalized thickness of core rings, and hole diameter to pitch ratio. At the same time the tailoring of dispersion slope can also be realized by changing the rounded diameter of air holes or pitch or normalized thickness of core rings. To illustrate the reasonability of fibre designs, this paper also gives the variance of normalized interface field intensity which measures the scattering loss relatively versus wavelength for different designs. From the viewpoint of loss, varying the rounded diameter and the thickness of core ring could shift zero wavelength but it is difficult to get the required parameters within so tiny range in practical drawing of PBGFs, on the other hand, it is possible in practice to respectively alter the pitch and refractive index to shift zero wavelength. But varying hole diameter to pitch ratio is not worthwhile because they each induce large increase of loss and narrowness of transmission bandwidth. The zero dispersion wavelength can be engineered by respectively varying the rounded diameter of air holes, pitch, refractive index, and normalized thickness of core rings without incurring large loss penalties.
基金Project supported by Science and Technology Foundation of Jiangsu Province (Grant No BE2008138)
文摘The macropore silica colloidal crystal templates were assembled orderly in a capillary glass tube by an applied electric field method to control silica deposition. In order to achieve the photonic band gap (PBG) of colloidal crystal in optical communication waveband, the diameter of silica microspheres is selected by Bragg diffraction formula. An experiment was designed to test the bandgap of the silica crystal templates. This paper discusses the formation process and the close-packed fashion of the silica colloidal crystal templates was discussed. The surface morphology of the templates was also analyzed. The results showed that the close-packed fashion of silica array templates was face-centered cubic (FCC) structure: The agreement is very good between the experimental data and the theoretical calculation.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 50172025)the Fundamental Research Foundation of Tsinghua University (Grant No. JZ2001008).
文摘The optical reflective spectra and microstruc-tures of polystyrene opal photonic crystals treated with different temperatures have been investigated. With temperature increasing, the polystyrene spheres in opal structure transform to dodecahedrons, and the peak of reflective spectrum moves to shorter wavelength. The experiment result testifies the effect of the effective refractive index and the filling ratio to the bandgap position, and it corresponds to the theoretical simulative result.
文摘Owing to its photonic band gap(PBG)and slow light effects,aniline black(AB)-poly(vinylidene fluoride)(PVDF)inverse opal(IO)photonic crystal(PC)was constructed to promote the utility of light and realize photothermal synergetic catalysis.As a highly efficient reaction platform with the capability of restricting heat,a microreactor was introduced to further amplify the photothermal effects of near infrared(NIR)radiation.The photocatalytic efficiency of ZnO/0.5AB-PVDF IO(Z0.5A)increases 1.63-fold compared to that of pure ZnO film under a full solar spectrum,indicating the effectiveness of synergetic promotion by slow light and photothermal effects.Moreover,a 5.85-fold increase is achieved by combining Z0.5A with a microreactor compared to the film in a beaker.The photon localization effect of PVDF IO was further exemplified by finite-difference time-domain(FDTD)calculations.In conclusion,photonic crystal-microreactor enhanced photothermal catalysis has immense potential for alleviating the deteriorating water environment.