Poly(vinylidene fluoride) /polysulfone(PVDF/PSF) flat blend membrane was prepared via thermally induced phase separation(TIPS) technique.The membrane formation mechanism and membrane structure were investigated and th...Poly(vinylidene fluoride) /polysulfone(PVDF/PSF) flat blend membrane was prepared via thermally induced phase separation(TIPS) technique.The membrane formation mechanism and membrane structure were investigated and the effects of PSF/PVDF weight ratio on morphology,crystallinity,porosity,and mechanical properties of the membrane were discussed.The relationship between membrane structure and performances,such as pure water flux and the rejection of carbonic black,was also discussed.It was found that solid-liquid(S-L) phase separation occurred for the PVDF/PSF/diluent system.The addition of PSF influences structure and crystallinity of the membrane,which in turn influences mechanical properties and performances of the membrane.The results reveal that it is possible to obtain network structure via S-L phase separation by blending the polymer,which has a partial compatibility with PVDF.展开更多
Various hydrophilic poly(ethylene-co-vinyl alcohol)(EVOH)were used herein to precisely control the structure and hydrodynamic properties of polysulfone(PSF)membranes.Particularly,to prepare pristine PSF and PSF/EVOH b...Various hydrophilic poly(ethylene-co-vinyl alcohol)(EVOH)were used herein to precisely control the structure and hydrodynamic properties of polysulfone(PSF)membranes.Particularly,to prepare pristine PSF and PSF/EVOH blends with increasing vinyl alcohol(VOH:73%,68%,56%),the non-solvent-induced phase separation(NIPS)technique was used.Polyethylene glycol was used as a compatibilizer and as a porogen in N,Ndimethylacetamide.Rheological and ultrasonic separation kinetic measurements were also carried out to develop an ultrafiltration membrane mechanism.The extracted membrane properties and filtration capabilities were systematically compared to the proposed mechanism.Accordingly,the addition of EVOH led to an increase in the rheology of the dopes.The resulting membranes exhibited a microporous structure,while the finger-like structures became more evident with increasing VOH content.The PSF/EVOH behavior was changed from immediate to delayed segregation due to a change in the hydrodynamic kinetics.Interestingly,the PSF/EVOH32 membranes showed high hydrophilicity and achieved a pure water permeability of 264 L·m^(–2)·h^(–1)·bar^(–1),which was higher than that of pure PSF membranes(171 L·m^(–2)·h^(–1)·bar^(–1)).In addition,PSF/EVOH32 rejected bovine serum albumin at a high rate(>90%)and achieved a significant restoration of permeability.Finally,from the thermodynamic and hydrodynamic results,valuable insights into the selection of hydrophilic copolymers were provided to tailor the membrane structure while improving both the permeability and antifouling performance.展开更多
基金National Natural Foundation of China(No.51003074)
文摘Poly(vinylidene fluoride) /polysulfone(PVDF/PSF) flat blend membrane was prepared via thermally induced phase separation(TIPS) technique.The membrane formation mechanism and membrane structure were investigated and the effects of PSF/PVDF weight ratio on morphology,crystallinity,porosity,and mechanical properties of the membrane were discussed.The relationship between membrane structure and performances,such as pure water flux and the rejection of carbonic black,was also discussed.It was found that solid-liquid(S-L) phase separation occurred for the PVDF/PSF/diluent system.The addition of PSF influences structure and crystallinity of the membrane,which in turn influences mechanical properties and performances of the membrane.The results reveal that it is possible to obtain network structure via S-L phase separation by blending the polymer,which has a partial compatibility with PVDF.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.22278318 and 21878230).
文摘Various hydrophilic poly(ethylene-co-vinyl alcohol)(EVOH)were used herein to precisely control the structure and hydrodynamic properties of polysulfone(PSF)membranes.Particularly,to prepare pristine PSF and PSF/EVOH blends with increasing vinyl alcohol(VOH:73%,68%,56%),the non-solvent-induced phase separation(NIPS)technique was used.Polyethylene glycol was used as a compatibilizer and as a porogen in N,Ndimethylacetamide.Rheological and ultrasonic separation kinetic measurements were also carried out to develop an ultrafiltration membrane mechanism.The extracted membrane properties and filtration capabilities were systematically compared to the proposed mechanism.Accordingly,the addition of EVOH led to an increase in the rheology of the dopes.The resulting membranes exhibited a microporous structure,while the finger-like structures became more evident with increasing VOH content.The PSF/EVOH behavior was changed from immediate to delayed segregation due to a change in the hydrodynamic kinetics.Interestingly,the PSF/EVOH32 membranes showed high hydrophilicity and achieved a pure water permeability of 264 L·m^(–2)·h^(–1)·bar^(–1),which was higher than that of pure PSF membranes(171 L·m^(–2)·h^(–1)·bar^(–1)).In addition,PSF/EVOH32 rejected bovine serum albumin at a high rate(>90%)and achieved a significant restoration of permeability.Finally,from the thermodynamic and hydrodynamic results,valuable insights into the selection of hydrophilic copolymers were provided to tailor the membrane structure while improving both the permeability and antifouling performance.