The grade crossings and adjacent pavements of urban trams are generally subjected to complex load conditions and are susceptible to damage.Therefore,in this study,a novel pavement structure between tram tracks and roa...The grade crossings and adjacent pavements of urban trams are generally subjected to complex load conditions and are susceptible to damage.Therefore,in this study,a novel pavement structure between tram tracks and roads constructed using polyurethane(PU)elastic concrete and ultra-high-performance concrete(UHPC),referred to as a track-road transitional pavement(TRTP),is proposed.Subsequently,its performance and feasibility are evaluated using experimental and numerical methods.First,the mechanical properties of the PU elastic concrete are evaluated.The performance of the proposed structure is investigated using a three-dimensional finite element model,where vehicleinduced dynamic and static loads are considered.The results show that PU elastic concrete and the proposed combined TRTP are applicable and functioned as intended.Additionally,the PU elastic concrete achieved sufficient performance.The recommended width of the TRTP is approximately 50 mm.Meanwhile,the application of UHPC under a PU elastic concrete layer significantly reduces vertical deformation.Results of numerical calculations confirmed the high structural performance and feasibility of the proposed TRTP.Finally,material performance standards are recommended to provide guidance for pavement design and the construction of tram-grade crossings in the future.展开更多
文摘The grade crossings and adjacent pavements of urban trams are generally subjected to complex load conditions and are susceptible to damage.Therefore,in this study,a novel pavement structure between tram tracks and roads constructed using polyurethane(PU)elastic concrete and ultra-high-performance concrete(UHPC),referred to as a track-road transitional pavement(TRTP),is proposed.Subsequently,its performance and feasibility are evaluated using experimental and numerical methods.First,the mechanical properties of the PU elastic concrete are evaluated.The performance of the proposed structure is investigated using a three-dimensional finite element model,where vehicleinduced dynamic and static loads are considered.The results show that PU elastic concrete and the proposed combined TRTP are applicable and functioned as intended.Additionally,the PU elastic concrete achieved sufficient performance.The recommended width of the TRTP is approximately 50 mm.Meanwhile,the application of UHPC under a PU elastic concrete layer significantly reduces vertical deformation.Results of numerical calculations confirmed the high structural performance and feasibility of the proposed TRTP.Finally,material performance standards are recommended to provide guidance for pavement design and the construction of tram-grade crossings in the future.