Increasing usage of foams in various industry sectors had causing serious disposal problems once it reaches the end of its life-cycle.Herein,PVA-MFC foam was prepared by freeze-drying using polyvinyl alcohol(PVA)and m...Increasing usage of foams in various industry sectors had causing serious disposal problems once it reaches the end of its life-cycle.Herein,PVA-MFC foam was prepared by freeze-drying using polyvinyl alcohol(PVA)and microfibrillated cellulose(MFC)as a reinforced material from sugarcane bagasse(SCB).In this study,the PVA-MFC foam was chemically silylated with Y-methacryloxypropyltrimethoxysilane(MPS)and tetraethoxysilane(TEOS).The wetting ability and mechanical strength of the silylated_(2,20)PVA-MFC foam was greatly enhanced compared with unmodified_(2,20)PVA-MFC foam.The silane chemicals(MPS and TEOS)had been confirmed grafted on_(2,20)PVA-MFC foam due to the presence of Si-C and Si-O-C stretching vibration as showed in Fourier Transform Infrared(FTIR)spectra and cloud-like coating of porous pore was observed in scanning electron microscopy(SEM)images.The silylated_(2,20)PVA-MFC foam(MPS and TEOS)exhibited a series of desirable properties such as lower swelling ratio and high absorption capacity of solvents and oils but had low thermal stability in thermogravimetric(TGA)analysis.The characterization of_(2,20)PVA-MFC foam using TEOS was further investigated.A significant difference in morphology was clearly observed between the unmodified and silylated_(2,20)PVA-MFC-TEOS foam through field emission scanning electron microscopy(FESEM)images.The X-ray photoelectron(XPS)analysis of silylated_(2,20)PVA-MFC-TEOS foam confirmed the presence of C,O and trace amount of Si elements.These synthesized_(2,20)PVA-MFC foam could be a promising material for broad range of polymer foam applications.展开更多
High aspect ratio Phlogopite mica was used to enhance the dimensional stability and mechanical properties of extruded rigid Polyvinyl Chloride (PVC) foam. Mica was added to rigid PVC compound at different concentratio...High aspect ratio Phlogopite mica was used to enhance the dimensional stability and mechanical properties of extruded rigid Polyvinyl Chloride (PVC) foam. Mica was added to rigid PVC compound at different concentrations (0 - 20 wt%) and processed using a single screw profile extruder. PVC foam-Mica composites were characterized for their dimensional stability, and structural, thermal, and mechanical properties. Experimental results showed that the dimensional stability increased by 44% and heat resistance of the samples improved as the amount of mica increased in the composites. The storage modulus and tensile strength of the composites were also enhanced with the addition of mica. However, increasing the concentration of mica had no significant effect on the impact and flexural properties of the composites. SEM micrographs show good dispersion and orientation of the mica flakes along the cell walls of the PVC foam. Overall, the platy structure and physical properties of mica seemed to have played an important role in providing good interfacial bonding with the cell membranes of the foam, thus enhancing the dimensional stability of the PVC- Mica foam composites.展开更多
Short cut E-glass fibers of two different lengths were used to determine the effect of glass fiber length on the dimensional stability of rigid Polyvinyl Chloride (PVC) foam in this study. Glass fibers measuring, 1/16...Short cut E-glass fibers of two different lengths were used to determine the effect of glass fiber length on the dimensional stability of rigid Polyvinyl Chloride (PVC) foam in this study. Glass fibers measuring, 1/16" and 1/32" at different concentrations (0 wt% - 20 wt%) were used to reinforce rigid PVC foams;the PVC foam-glass fiber (PVC-GF) composites were extruded using a single screw profile extruder. The extruded PVC-GF composites were characterized for their dimensional stability, structural, thermal, and mechanical properties. Experimental results show that the dimensional stability, heat resistance, and storage modulus were enhanced without compromising the tensile and flexural strengths of the composites. Thermal shrinkage decreased by almost 55% in composites reinforced with 1/32" GF and by 60% in composites reinforced with 1/16" GFs, with visible improvements to the shape distortion. Overall, foam composites which were prepared with longer (1/16") glass fibers exhibited better mechanical and thermal properties than those prepared with shorter (1/32") glass fibers. Microstructural observations suggest that this is due to better interlocking between the long fibers and the foam cells, which result in better load distribution in the matrix.展开更多
基金support provided by the Ministry of Education of Malaysia under grant FRGS 16-044-0543 and FRGS19-091-0700.
文摘Increasing usage of foams in various industry sectors had causing serious disposal problems once it reaches the end of its life-cycle.Herein,PVA-MFC foam was prepared by freeze-drying using polyvinyl alcohol(PVA)and microfibrillated cellulose(MFC)as a reinforced material from sugarcane bagasse(SCB).In this study,the PVA-MFC foam was chemically silylated with Y-methacryloxypropyltrimethoxysilane(MPS)and tetraethoxysilane(TEOS).The wetting ability and mechanical strength of the silylated_(2,20)PVA-MFC foam was greatly enhanced compared with unmodified_(2,20)PVA-MFC foam.The silane chemicals(MPS and TEOS)had been confirmed grafted on_(2,20)PVA-MFC foam due to the presence of Si-C and Si-O-C stretching vibration as showed in Fourier Transform Infrared(FTIR)spectra and cloud-like coating of porous pore was observed in scanning electron microscopy(SEM)images.The silylated_(2,20)PVA-MFC foam(MPS and TEOS)exhibited a series of desirable properties such as lower swelling ratio and high absorption capacity of solvents and oils but had low thermal stability in thermogravimetric(TGA)analysis.The characterization of_(2,20)PVA-MFC foam using TEOS was further investigated.A significant difference in morphology was clearly observed between the unmodified and silylated_(2,20)PVA-MFC-TEOS foam through field emission scanning electron microscopy(FESEM)images.The X-ray photoelectron(XPS)analysis of silylated_(2,20)PVA-MFC-TEOS foam confirmed the presence of C,O and trace amount of Si elements.These synthesized_(2,20)PVA-MFC foam could be a promising material for broad range of polymer foam applications.
文摘High aspect ratio Phlogopite mica was used to enhance the dimensional stability and mechanical properties of extruded rigid Polyvinyl Chloride (PVC) foam. Mica was added to rigid PVC compound at different concentrations (0 - 20 wt%) and processed using a single screw profile extruder. PVC foam-Mica composites were characterized for their dimensional stability, and structural, thermal, and mechanical properties. Experimental results showed that the dimensional stability increased by 44% and heat resistance of the samples improved as the amount of mica increased in the composites. The storage modulus and tensile strength of the composites were also enhanced with the addition of mica. However, increasing the concentration of mica had no significant effect on the impact and flexural properties of the composites. SEM micrographs show good dispersion and orientation of the mica flakes along the cell walls of the PVC foam. Overall, the platy structure and physical properties of mica seemed to have played an important role in providing good interfacial bonding with the cell membranes of the foam, thus enhancing the dimensional stability of the PVC- Mica foam composites.
文摘Short cut E-glass fibers of two different lengths were used to determine the effect of glass fiber length on the dimensional stability of rigid Polyvinyl Chloride (PVC) foam in this study. Glass fibers measuring, 1/16" and 1/32" at different concentrations (0 wt% - 20 wt%) were used to reinforce rigid PVC foams;the PVC foam-glass fiber (PVC-GF) composites were extruded using a single screw profile extruder. The extruded PVC-GF composites were characterized for their dimensional stability, structural, thermal, and mechanical properties. Experimental results show that the dimensional stability, heat resistance, and storage modulus were enhanced without compromising the tensile and flexural strengths of the composites. Thermal shrinkage decreased by almost 55% in composites reinforced with 1/32" GF and by 60% in composites reinforced with 1/16" GFs, with visible improvements to the shape distortion. Overall, foam composites which were prepared with longer (1/16") glass fibers exhibited better mechanical and thermal properties than those prepared with shorter (1/32") glass fibers. Microstructural observations suggest that this is due to better interlocking between the long fibers and the foam cells, which result in better load distribution in the matrix.