Membrane technology features inspiring excellence from numerous separation technologies for CO_(2) capture from post-combustion gas.Polyvinylamine(PVAm)-based facilitated transport membranes show significantly high se...Membrane technology features inspiring excellence from numerous separation technologies for CO_(2) capture from post-combustion gas.Polyvinylamine(PVAm)-based facilitated transport membranes show significantly high separation performance,which has been proven promising for industrial scale-up.However,commercialized PVAm with low molecular weight and excessive crystallinity is not available to prepare high-performance membranes.Herein,the synthesis process of PVAm was optimized by regulating polymerization and acidic hydrolytic conditions.The membranes based on PVAm with a molecular weight of 154 kDa and crystallinity of 11.37%display high CO_(2) permeance of 726 GPU and CO_(2)/N_(2) selectivity of 55 at a feed gas pressure of 0.50 MPa.Furthermore,we established a PVAm synthesis reactor with an annual PVAm solution(1%(mass))capacity of over 7000 kg and realized the scaled-up manufacture of both PVAm and composite membranes.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB3801200)the National Natural Science Foundation of China(21938007)the Natural Science Foundation of Hebei Province(E2020402036)。
文摘Membrane technology features inspiring excellence from numerous separation technologies for CO_(2) capture from post-combustion gas.Polyvinylamine(PVAm)-based facilitated transport membranes show significantly high separation performance,which has been proven promising for industrial scale-up.However,commercialized PVAm with low molecular weight and excessive crystallinity is not available to prepare high-performance membranes.Herein,the synthesis process of PVAm was optimized by regulating polymerization and acidic hydrolytic conditions.The membranes based on PVAm with a molecular weight of 154 kDa and crystallinity of 11.37%display high CO_(2) permeance of 726 GPU and CO_(2)/N_(2) selectivity of 55 at a feed gas pressure of 0.50 MPa.Furthermore,we established a PVAm synthesis reactor with an annual PVAm solution(1%(mass))capacity of over 7000 kg and realized the scaled-up manufacture of both PVAm and composite membranes.